Mercurial > hg > Gears > GearsAgda
changeset 817:dfa764ddced2
reached to insertCase5
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 24 Jan 2024 19:52:12 +0900 |
parents | a16f0b2ce509 |
children | eba0fb12a923 |
files | hoareBinaryTree1.agda |
diffstat | 1 files changed, 18 insertions(+), 61 deletions(-) [+] |
line wrap: on
line diff
--- a/hoareBinaryTree1.agda Wed Jan 24 12:35:05 2024 +0900 +++ b/hoareBinaryTree1.agda Wed Jan 24 19:52:12 2024 +0900 @@ -750,7 +750,7 @@ data RBI-state {n : Level} {A : Set n} (key : ℕ) : (tree repl : bt (Color ∧ A) ) → Set n where rebuild : {tree repl : bt (Color ∧ A) } → black-depth repl ≡ black-depth (child-replaced key tree) → RBI-state key tree repl - rotate : {tree repl : bt (Color ∧ A) } → color repl ≡ Red → black-depth repl ≡ suc (black-depth (child-replaced key tree)) → RBI-state key tree repl + rotate : {tree repl : bt (Color ∧ A) } → color repl ≡ Red → black-depth repl ≡ black-depth (child-replaced key tree) → RBI-state key tree repl record RBI {n : Level} {A : Set n} (key : ℕ) (value : A) (orig repl : bt (Color ∧ A) ) (stack : List (bt (Color ∧ A))) : Set n where field @@ -945,38 +945,11 @@ ... | rotate repl-red pbdeth< with stackToPG (RBI.tree r) orig stack (RBI.si r) ... | case1 eq = exit repl stack eq r -- no stack, replace top node ... | case2 (case1 eq) = insertCase12 orig refl (RBI.si r) where - insertCase2 : (tree parent uncle grand : bt (Color ∧ A)) - → (stack : List (bt (Color ∧ A))) → (si : stackInvariant key tree orig stack ) - → (pg : ParentGrand tree parent uncle grand ) → t - insertCase2 tree leaf uncle grand stack si (s2-s1p2 () x₁) - insertCase2 tree leaf uncle grand stack si (s2-1sp2 () x₁) - insertCase2 tree leaf uncle grand stack si (s2-s12p () x₁) - insertCase2 tree leaf uncle grand stack si (s2-1s2p () x₁) - insertCase2 tree parent@(node kp ⟪ Red , _ ⟫ _ _) uncle grand stack si pg = {!!} -- next {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} - insertCase2 tree parent@(node kp ⟪ Black , _ ⟫ _ _) leaf grand stack si pg = {!!} - insertCase2 tree parent@(node kp ⟪ Black , _ ⟫ _ _) (node ku ⟪ Red , _ ⟫ _ _ ) grand stack si pg = {!!} -- next {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} - insertCase2 tree parent@(node kp ⟪ Black , _ ⟫ _ _) (node ku ⟪ Black , _ ⟫ _ _) grand stack si (s2-s1p2 x x₁) = {!!} - -- insertCase5 key value orig tree {!!} rbio {!!} {!!} stack si {!!} ri {!!} {!!} next exit - -- tree is left of parent, parent is left of grand - -- node kp ⟪ Black , proj3 ⟫ left right ≡ node kp₁ vp tree n1 - -- grand ≡ node kg vg (node kp ⟪ Black , proj3 ⟫ left right) (node ku ⟪ Black , proj4 ⟫ left₁ right₁) - insertCase2 tree parent@(node kp ⟪ Black , _ ⟫ _ _) (node ku ⟪ Black , _ ⟫ _ _) grand stack si (s2-1sp2 x x₁) = {!!} - -- rotateLeft key value orig tree {!!} repl rbio {!!} {!!} stack si {!!} ri {!!} {!!} - -- (λ a b c d e f h i j k l m → insertCase5 key value a b c d {!!} {!!} h i j k l {!!} {!!} next exit ) exit - -- tree is right of parent, parent is left of grand rotateLeft - -- node kp ⟪ Black , proj3 ⟫ left right ≡ node kp₁ vp n1 tree - -- grand ≡ node kg vg (node kp ⟪ Black , proj3 ⟫ left right) (node ku ⟪ Black , proj4 ⟫ left₁ right₁) - insertCase2 tree parent@(node kp ⟪ Black , _ ⟫ _ _) (node ku ⟪ Black , _ ⟫ _ _) grand stack si (s2-s12p x x₁) = {!!} - -- rotateRight key value orig tree {!!} repl rbio {!!} {!!} stack si {!!} ri {!!} {!!} - -- (λ a b c d e f h i j k l m → insertCase5 key value a b c d {!!} {!!} h i j k l {!!} {!!} next exit ) exit - -- tree is left of parent, parent is right of grand, rotateRight - -- node kp ⟪ Black , proj3 ⟫ left right ≡ node kp₁ vp tree n1 - -- grand ≡ node kg vg (node ku ⟪ Black , proj4 ⟫ left₁ right₁) (node kp ⟪ Black , proj3 ⟫ left right) - insertCase2 tree parent@(node kp ⟪ Black , _ ⟫ _ _) (node ku ⟪ Black , _ ⟫ _ _) grand stack si (s2-1s2p x x₁) = {!!} - -- insertCase5 key value orig tree {!!} repl rbio {!!} {!!} stack si {!!} ri {!!} {!!} next exit - -- tree is right of parent, parent is right of grand - -- node kp ⟪ Black , proj3 ⟫ left right ≡ node kp₁ vp n1 tree - -- grand ≡ node kg vg (node ku ⟪ Black , proj4 ⟫ left₁ right₁) (node kp ⟪ Black , proj3 ⟫ left right) + -- + -- we have no grand parent + -- eq : stack₁ ≡ RBI.tree r ∷ orig ∷ [] + -- change parent color ≡ Black and exit + -- -- one level stack, orig is parent of repl rb01 : stackInvariant key (RBI.tree r) orig stack rb01 = RBI.si r @@ -994,20 +967,7 @@ rb04 (s-right tree .(node key₁ _ tree₁ tree) tree₁ x s-nil) refl refl with si-property1 si ... | refl = ⊥-elim ( nat-<> x a ) ... | tri≈ ¬a b ¬c = {!!} -- can't happen - ... | tri> ¬a ¬b c = insertCase13 value₁ refl where - -- - -- orig B - -- / \ - -- left tree → rot → repl R - -- - -- B => B B => B - -- / \ / \ / \ rotate L / \ - -- L L1 L R3 L R -- bad B B - -- / \ / \ / \ 1 : child-replace - --- L L2 L B L L 2: child-replace ( unbalanced ) - -- / \ 3: child-replace ( rotated / balanced ) - -- L L - -- + ... | tri> ¬a ¬b c = insertCase13 value₁ refl pbdeth< where rb04 : stackInvariant key (RBI.tree r) orig stack → stack ≡ RBI.tree r ∷ orig ∷ [] → tr0 ≡ orig → right ≡ RBI.tree r rb04 (s-right tree .(node key₁ _ tree₁ tree) tree₁ x s-nil) refl refl = refl rb04 (s-left tree₁ .(node key₁ value₁ left right) tree {key₂} x si) refl refl with si-property1 si @@ -1015,8 +975,11 @@ -- -- RBI key value (node key₁ ⟪ Black , value₄ ⟫ left right) repl stack -- - insertCase13 : (v : Color ∧ A ) → v ≡ value₁ → t - insertCase13 ⟪ Black , value₄ ⟫ refl = exit (node key₁ ⟪ Black , value₄ ⟫ left repl) (orig ∷ []) refl record { + insertCase13 : (v : Color ∧ A ) → v ≡ value₁ → black-depth repl ≡ black-depth (child-replaced key (RBI.tree r)) → t + insertCase13 ⟪ Black , value₄ ⟫ refl beq with <-cmp key key₁ | child-replaced key (node key₁ ⟪ Black , value₄ ⟫ left right) in creq + ... | tri< a ¬b ¬c | cr = ⊥-elim (¬c c) + ... | tri≈ ¬a b ¬c | cr = ⊥-elim (¬c c) + ... | tri> ¬a ¬b c | cr = exit (node key₁ ⟪ Black , value₄ ⟫ left repl) (orig ∷ []) refl record { tree = orig ; origti = RBI.origti r ; origrb = RBI.origrb r @@ -1025,7 +988,7 @@ ; si = s-nil ; rotated = ? ; ri = ? - ; state = ? + ; state = rebuild ? } where rb09 : {n : Level} {A : Set n} → {key key1 key2 : ℕ} {value value1 : A} {t1 t2 : bt (Color ∧ A)} → RBtreeInvariant (node key ⟪ Red , value ⟫ leaf (node key1 ⟪ Black , value1 ⟫ t1 t2)) @@ -1035,17 +998,11 @@ tkey : {n : Level} {A : Set n } → (rbt : bt (Color ∧ A)) → ℕ tkey (node key value t t2) = key tkey leaf = {!!} -- key is none - rb051 : {n : Level} {A : Set n} {key key1 : ℕ } {value : A} {t t1 t2 : bt (Color ∧ A)} {c : Color} → replacedTree key ⟪ ? , value ⟫ (node key1 ⟪ c , value ⟫ t1 t2) (node key1 ⟪ c , value ⟫ t1 t) → key1 < key - rb051 = {!!} - rb052 : {key key₁ : ℕ} → stackInvariant key (RBI.tree r) orig stack → key < key₁ - rb052 = {!!} - insertCase13 ⟪ Red , value₄ ⟫ eq with color (RBI.tree r) - ... | Black = exit {!!} {!!} {!!} {!!} - ... | Red = exit {!!} {!!} {!!} {!!} - -- r = orig RBI.tree b - -- / \ => / \ - -- b b → r RBI.tree r r = orig o (r/b) -... | case2 (case2 pg) = {!!} -- insertCase2 tree (PG.parent pg) (PG.uncle pg) (PG.grand pg) stack si (PG.pg pg) + insertCase13 ⟪ Red , value₄ ⟫ eq beq = ? -- can't happen +... | case2 (case2 pg) with PG.uncle pg +... | leaf = ? -- insertCase5 +... | node key₁ ⟪ Black , value₁ ⟫ t₁ t₂ = ? -- insertCase5 +... | node key₁ ⟪ Red , value₁ ⟫ t₁ t₂ = next ? ? ? ? -- going to two level up