Mercurial > hg > Gears > GearsAgda
changeset 521:e3cd5e3a01b8
add stack implement
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 05 Jan 2018 09:31:04 +0900 |
parents | b118ed3ba583 |
children | f63a9a081b61 |
files | src/parallel_execution/RedBlackTree.agda |
diffstat | 1 files changed, 29 insertions(+), 25 deletions(-) [+] |
line wrap: on
line diff
--- a/src/parallel_execution/RedBlackTree.agda Fri Jan 05 00:01:18 2018 +0900 +++ b/src/parallel_execution/RedBlackTree.agda Fri Jan 05 09:31:04 2018 +0900 @@ -39,25 +39,29 @@ color : Color {n} open Node -record RedBlackTree {n m : Level } {t : Set m} (a k si : Set n) : Set (m Level.⊔ n) where +Stak : {n m : Level } (a k : Set n) (t : Set m ) -> Set (m ⊔ n) +Stak {n} {m} a k t = Stack {n} {m} (Node a k) {t} (SingleLinkedStack (Node a k)) +open Stack + +record RedBlackTree {n m : Level } {t : Set m} (a k : Set n) : Set (m Level.⊔ n) where field root : Maybe (Node a k) - nodeStack : Stack {n} {m} (Node a k) {t} ( SingleLinkedStack (Node a k ) ) + nodeStack : Stak a k t compare : k -> k -> CompareResult {n} open RedBlackTree -open Stack + -- -- put new node at parent node, and rebuild tree to the top -- {-# TERMINATING #-} -- https://agda.readthedocs.io/en/v2.5.3/language/termination-checking.html -replaceNode : {n m : Level } {t : Set m } {a k si : Set n} -> RedBlackTree {n} {m} {t} a k si -> Stack (Node a k) si -> Node a k -> Node a k -> (RedBlackTree {n} {m} {t} a k si -> t) -> t -replaceNode {n} {m} {t} {a} {k} {si} tree s parent n0 next = popStack s ( +replaceNode : {n m : Level } {t : Set m } {a k : Set n} -> RedBlackTree {n} {m} {t} a k -> Stak a k t -> Node a k -> Node a k -> (RedBlackTree {n} {m} {t} a k -> t) -> t +replaceNode {n} {m} {t} {a} {k} tree s parent n0 next = popStack s ( \s grandParent -> replaceNode1 s grandParent ( compare tree (key parent) (key n0) ) ) where - replaceNode1 : Stack (Node a k) si -> Maybe ( Node a k ) -> CompareResult -> t + replaceNode1 : Stak a k t -> Maybe ( Node a k ) -> CompareResult -> t replaceNode1 s Nothing LT = next ( record tree { root = Just ( record parent { left = Just n0 ; color = Black } ) } ) replaceNode1 s Nothing GT = next ( record tree { root = Just ( record parent { right = Just n0 ; color = Black } ) } ) replaceNode1 s Nothing EQ = next ( record tree { root = Just ( record parent { right = Just n0 ; color = Black } ) } ) @@ -66,25 +70,25 @@ ... | GT = replaceNode tree s grandParent ( record parent { right = Just n0 } ) next ... | EQ = next tree -rotateRight : {n m : Level } {t : Set m } {a k si : Set n} -> RedBlackTree {n} {m} {t} a k si -> Stack (Node a k) {t} si -> Node a k -> Node a k -> Node a k -> (RedBlackTree {n} {m} {t} a k si -> t) -> t -rotateRight {n} {m} {t} {a} {k} {si} tree s n0 parent grandParent next = {!!} +rotateRight : {n m : Level } {t : Set m } {a k : Set n} -> RedBlackTree {n} {m} {t} a k -> Stak a k t -> Node a k -> Node a k -> Node a k -> (RedBlackTree {n} {m} {t} a k -> t) -> t +rotateRight {n} {m} {t} {a} {k} tree s n0 parent grandParent next = {!!} -rotateLeft : {n m : Level } {t : Set m } {a k si : Set n} -> RedBlackTree {n} {m} {t} a k si -> Stack (Node a k) {t} si -> Node a k -> Node a k -> Node a k -> (RedBlackTree {n} {m} {t} a k si -> t) -> t -rotateLeft {n} {m} {t} {a} {k} {si} tree s n0 parent grandParent next = {!!} +rotateLeft : {n m : Level } {t : Set m } {a k : Set n} -> RedBlackTree {n} {m} {t} a k -> Stak a k t -> Node a k -> Node a k -> Node a k -> (RedBlackTree {n} {m} {t} a k -> t) -> t +rotateLeft {n} {m} {t} {a} {k} tree s n0 parent grandParent next = {!!} -insertCase5 : {n m : Level } {t : Set m } {a k si : Set n} -> RedBlackTree {n} {m} {t} a k si -> Stack (Node a k) {t} si -> Node a k -> Node a k -> Node a k -> (RedBlackTree {n} {m} {t} a k si -> t) -> t -insertCase5 {n} {m} {t} {a} {k} {si} tree s n0 parent grandParent next = {!!} +insertCase5 : {n m : Level } {t : Set m } {a k : Set n} -> RedBlackTree {n} {m} {t} a k -> Stak a k t -> Node a k -> Node a k -> Node a k -> (RedBlackTree {n} {m} {t} a k -> t) -> t +insertCase5 {n} {m} {t} {a} {k} tree s n0 parent grandParent next = {!!} -insertCase4 : {n m : Level } {t : Set m } {a k si : Set n} -> RedBlackTree {n} {m} {t} a k si -> Stack (Node a k) {t} si -> Node a k -> Node a k -> Node a k -> (RedBlackTree {n} {m} {t} a k si -> t) -> t -insertCase4 {n} {m} {t} {a} {k} {si} tree s n0 parent grandParent next = {!!} +insertCase4 : {n m : Level } {t : Set m } {a k : Set n} -> RedBlackTree {n} {m} {t} a k -> Stak a k t -> Node a k -> Node a k -> Node a k -> (RedBlackTree {n} {m} {t} a k -> t) -> t +insertCase4 {n} {m} {t} {a} {k} tree s n0 parent grandParent next = {!!} {-# TERMINATING #-} -insertNode : {n m : Level } {t : Set m } {a k si : Set n} -> RedBlackTree {n} {m} {t} a k si -> Stack (Node a k) {t} si -> Node a k -> (RedBlackTree {n} {m} {t} a k si -> t) -> t -insertNode {n} {m} {t} {a} {k} {si} tree s n0 next = get2Stack s (\ s d1 d2 -> insertCase1 s n0 d1 d2 ) +insertNode : {n m : Level } {t : Set m } {a k : Set n} -> RedBlackTree {n} {m} {t} a k -> Stak a k t -> Node a k -> (RedBlackTree {n} {m} {t} a k -> t) -> t +insertNode {n} {m} {t} {a} {k} tree s n0 next = get2Stack s (\ s d1 d2 -> insertCase1 s n0 d1 d2 ) where - insertCase1 : Stack (Node a k) si -> Node a k -> Maybe (Node a k) -> Maybe (Node a k) -> t -- placed here to allow mutual recursion + insertCase1 : Stack (Node a k) (SingleLinkedStack (Node a k)) -> Node a k -> Maybe (Node a k) -> Maybe (Node a k) -> t -- placed here to allow mutual recursion -- http://agda.readthedocs.io/en/v2.5.2/language/mutual-recursion.html - insertCase3 : Stack (Node a k) si -> Node a k -> Node a k -> Node a k -> t + insertCase3 : Stak a k t -> Node a k -> Node a k -> Node a k -> t insertCase3 s n0 parent grandParent with left grandParent | right grandParent ... | Nothing | Nothing = insertCase4 tree s n0 parent grandParent next ... | Nothing | Just uncle = insertCase4 tree s n0 parent grandParent next @@ -94,7 +98,7 @@ ... | Red = pop2Stack s ( \s p0 p1 -> insertCase1 s ( record grandParent { color = Red ; left = Just ( record parent { color = Black ; left = Just n0 } ) ; right = Just ( record uncle { color = Black } ) }) p0 p1 ) ... | Black = insertCase4 tree s n0 parent grandParent next - insertCase2 : Stack (Node a k) si -> Node a k -> Node a k -> Node a k -> t + insertCase2 : Stak a k t -> Node a k -> Node a k -> Node a k -> t insertCase2 s n0 parent grandParent with color parent ... | Black = replaceNode tree s grandParent n0 next ... | Red = insertCase3 s n0 parent grandParent @@ -104,13 +108,13 @@ insertCase1 s n0 (Just parent) (Just grandParent) = insertCase2 s n0 parent grandParent where -findNode : {n m : Level } {a k si : Set n} {t : Set m} -> RedBlackTree {n} {m} {t} a k si -> Stack (Node a k) si -> (Node a k) -> (Node a k) -> (RedBlackTree {n} {m} {t} a k si -> Stack (Node a k) si -> Node a k -> t) -> t -findNode {n} {m} {a} {k} {si} {t} tree s n0 n1 next = pushStack s n1 (\ s -> findNode1 s n1) +findNode : {n m : Level } {a k : Set n} {t : Set m} -> RedBlackTree {n} {m} {t} a k -> Stak a k t -> (Node a k) -> (Node a k) -> (RedBlackTree {n} {m} {t} a k -> Stak a k t -> Node a k -> t) -> t +findNode {n} {m} {a} {k} {t} tree s n0 n1 next = pushStack s n1 (\ s -> findNode1 s n1) where - findNode2 : Stack (Node a k) si -> (Maybe (Node a k)) -> t + findNode2 : Stak a k t -> (Maybe (Node a k)) -> t findNode2 s Nothing = next tree s n0 findNode2 s (Just n) = findNode tree s n0 n next - findNode1 : Stack (Node a k) si -> (Node a k) -> t + findNode1 : Stak a k t -> (Node a k) -> t findNode1 s n1 with (compare tree (key n0) (key n1)) ... | EQ = next tree s n0 ... | GT = findNode2 s (right n1) @@ -126,12 +130,12 @@ color = Black } -putRedBlackTree : {n m : Level } {a k : Set n} {t : Set m} -> RedBlackTree a k (SingleLinkedStack (Node a k)) -> k -> a -> (RedBlackTree a k (SingleLinkedStack (Node a k)) -> t) -> t +putRedBlackTree : {n m : Level } {a k : Set n} {t : Set m} -> RedBlackTree a k -> k -> a -> (RedBlackTree a k -> t) -> t putRedBlackTree {n} {m} {a} {k} {t} tree k1 value next with (root tree) ... | Nothing = next (record tree {root = Just (leafNode k1 value) }) ... | Just n2 = findNode tree (nodeStack tree) (leafNode k1 value) n2 (\ tree1 s n1 -> insertNode tree1 s n1 next) -getRedBlackTree : {n m : Level } {a k : Set n} {t : Set m} -> RedBlackTree {n} {m} {t} a k (SingleLinkedStack (Node a k)) -> k -> (RedBlackTree a k (SingleLinkedStack (Node a k)) -> (Maybe (Node a k)) -> t) -> t +getRedBlackTree : {n m : Level } {a k : Set n} {t : Set m} -> RedBlackTree {n} {m} {t} a k -> k -> (RedBlackTree a k -> (Maybe (Node a k)) -> t) -> t getRedBlackTree {_} {_} {a} {k} {t} tree k1 cs = checkNode (root tree) where checkNode : Maybe (Node a k) -> t