Mercurial > hg > Gears > GearsAgda
changeset 513:f2a3acc766b5
fix RedBlackTree.agda
author | ryokka |
---|---|
date | Thu, 04 Jan 2018 17:46:59 +0900 |
parents | 95865cab040a |
children | f86da73d611e |
files | src/parallel_execution/RedBlackTree.agda |
diffstat | 1 files changed, 38 insertions(+), 35 deletions(-) [+] |
line wrap: on
line diff
--- a/src/parallel_execution/RedBlackTree.agda Thu Jan 04 15:10:24 2018 +0900 +++ b/src/parallel_execution/RedBlackTree.agda Thu Jan 04 17:46:59 2018 +0900 @@ -12,15 +12,15 @@ record Tree {n m : Level } {a : Set n } {t : Set m } (treeImpl : Set n ) : Set (m Level.⊔ n) where field tree : treeImpl - treeMethods : TreeMethods {a} {t} - putTree : a -> (Tree -> t) -> t + treeMethods : TreeMethods {n} {m} {a} {t} treeImpl + putTree : a -> (Tree treeImpl -> t) -> t putTree d next = putImpl (treeMethods ) tree d (\t1 -> next (record {tree = t1 ; treeMethods = treeMethods} )) - getTree : (Tree -> Maybe a -> t) -> t + getTree : (Tree treeImpl -> Maybe a -> t) -> t getTree next = getImpl (treeMethods ) tree (\t1 d -> next (record {tree = t1 ; treeMethods = treeMethods} ) d ) open Tree -data Color : Set where +data Color {n : Level } : Set n where Red : Color Black : Color @@ -29,65 +29,68 @@ GT : CompareResult EQ : CompareResult -record Node (a k : Set) : Set where +record Node {n : Level } (a k : Set n) : Set n where + inductive field key : k value : a - right : Maybe (Node a) - left : Maybe (Node a) + right : Maybe (Node a k) + left : Maybe (Node a k) color : Color open Node -record RedBlackTree (a k si : Set) : Set where +record RedBlackTree {n m : Level } (a k si : Set n) : Set (m Level.⊔ n) where field root : Maybe (Node a k ) - stack : Stack si + nodeStack : Stack {n} {m} si compare : k -> k -> CompareResult open RedBlackTree open Stack -insertCase3 : ? -insertCase3 = ? -- tree datum parent grandparent next +insertCase3 : {n m : Level } {t : Set m } {a k : Set n} -> RedBlackTree {!!} {!!} {!!} -> a -> (Node a k) -> (Maybe (Node a k)) -> (RedBlackTree {!!} {!!} {!!} -> t) -> t +insertCase3 = {!!} -- tree datum parent grandparent next -insertCase2 : {n m : Level } {t : Set m } {a : Set n} -> RedBlackTree ? ? -> a (Node a) (Node a) ? -> t +insertCase2 : {n m : Level } {t : Set m } {a k : Set n} -> RedBlackTree {!!} {!!} {!!} -> a -> (Node a k) -> (Maybe (Node a k)) -> (RedBlackTree {!!} {!!} {!!} -> t) -> t insertCase2 tree datum parent grandparent next with (color parent) ... | Red = insertCase3 tree datum parent grandparent next -... | Black = next (record { root = ?; stack = createSingleLinkedStack }) +... | Black = next (record { root = {!!}; nodeStack = createSingleLinkedStack }) -insertCase1 : {n m : Level } {t : Set m } {a : Set n} -> RedBlackTree ? ? -> a (Maybe (Node a) ) (Node a) ? -> t -insertCase1 tree datum Nothing grandparent next = next (record { root = ?; stack = createSingleLinkedStack }) +insertCase1 : {n m : Level } {t : Set m } {a k : Set n} -> RedBlackTree {!!} {!!} {!!} -> a -> (Maybe (Node a k) ) -> (Maybe (Node a k)) -> (RedBlackTree {!!} {!!} {!!} -> t) -> t +insertCase1 tree datum Nothing grandparent next = next (record { root = {!!}; nodeStack = createSingleLinkedStack }) insertCase1 tree datum (Just parent) grandparent next = insertCase2 tree datum parent grandparent next -insertNode : ? -insertNode tree datum next = get2Stack (stack tree) (\ s d1 d2 -> insertCase1 ( record { root = root tree; stack = s }) datum d1 d2 next) +insertNode : {n m : Level } {t : Set m } {a k : Set n} -> RedBlackTree {!!} {!!} {!!} -> a -> (RedBlackTree {!!} {!!} {!!} -> t) -> t +insertNode tree datum next = get2Stack (nodeStack tree) (\ s d1 d2 -> insertCase1 ( record { root = root tree; nodeStack = s }) datum d1 d2 next) -findNode1 : {Data t : Set} -> RedBlackTree Data -> Data -> Data -> (Code : RedBlackTree Data (RedBlackTree Data -> t) -> t) -> t -findNode1 tree datum n next with (compare datum n) -... | EQ = popStack (tree stack) (\s d -> findNode3 d (record tree { root = just (record n {node = datum}); stack = s }) next) -... | GT = findNode2 tree datum (right n) next -... | LT = findNode2 tree datum (left n) next +findNode : {n m : Level } {a k : Set n} {t : Set m} -> RedBlackTree a k {!!} -> (Node a k) -> (Node a k) -> (RedBlackTree a k {!!} -> t) -> t +findNode {n} {m} {a} {k} {t} tree n1 next = pushStack (nodeStack tree) n1 (\ s -> findNode1 (record tree {nodeStack = s }) n1 next) where - findNode2 tree datum nothing next = insertNode tree datum next - findNode2 tree datum (just n) next = findNode (record tree {root = just n}) datum n next - findNode3 : ? - findNode3 nothing tree next = next tree - findNode3 (just n) tree next = - popStack (tree stack) (\s d -> findNode3 d (record { root = record n {right = ? } })) + findNode1 : RedBlackTree a k {!!} -> (Node a k) -> (Node a k) -> (RedBlackTree a k {!!} -> t) -> t + findNode1 tree n0 n1 next with (compare tree (key n0) (key n1)) + ... | EQ = popStack (nodeStack tree) (\s d -> {!!} d (record tree { root = Just (record n {node = datum}); stack = s }) next) + ... | GT = {!!} tree datum (right n) next + ... | LT = findNode2 tree {!!} (left n1) next + where + findNode2 : RedBlackTree a k {!!} -> (Node a k) -> (Maybe (Node a k)) -> (RedBlackTree a k {!!} -> t) -> t + findNode2 tree datum Nothing next = insertNode tree datum next + findNode2 tree datum (Just n) next = findNode (record tree {root = Just n}) datum n next + findNode3 : RedBlackTree a k {!!} -> (Maybe (Node a k)) -> (RedBlackTree a k {!!} -> t) -> t + findNode3 tree nothing next = next tree + findNode3 tree (Just n) next = + popStack (nodeStack tree) (\s d -> findNode3 tree d {!!} ) -findNode : {Data t : Set} -> RedBlackTree Data -> Data -> Node Data -> (Code : RedBlackTree Data (RedBlackTree Data -> t) -> t) -> t -findNode tree datum n next = pushStack (stack tree) n (\ s -> findNode1 (record tree {stack = s }) datum n next) -putRedBlackTree : {Data t : Set} -> RedBlackTree Data -> Data -> (Code : RedBlackTree Data -> t) -> t +putRedBlackTree : {a t : Set} -> RedBlackTree {!!} {!!} {!!} -> a -> (RedBlackTree {!!} {!!} {!!} -> t) -> t putRedBlackTree tree datum next with (root tree) ... | Nothing = insertNode tree datum next -... | Just n = findNode tree datum n (\ tree1 -> insertNode tree1 datum next) +... | Just n = findNode tree {!!} n (\ tree1 -> insertNode tree1 datum next) -getRedBlackTree : {a t : Set} -> RedBlackTree a -> (Code : RedBlackTree a -> (Maybe a) -> t) -> t +getRedBlackTree : {a t : Set} -> RedBlackTree {!!} {!!} {!!} -> (Code : RedBlackTree {!!} {!!} {!!} -> (Maybe a) -> t) -> t getRedBlackTree tree cs with (root tree) ... | Nothing = cs tree Nothing ... | Just d = cs stack1 (Just data1) where - data1 = datum d - stack1 = record { root = (next d) } + data1 = {!!} + stack1 = {!!}