Mercurial > hg > Gears > GearsAgda
changeset 605:f8cc98fcc34b
define invariant
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 03 Nov 2021 15:58:10 +0900 |
parents | 2075785a124a |
children | 61a0491a627b |
files | fig/tree-invariant.graffle hoareBinaryTree.agda |
diffstat | 2 files changed, 22 insertions(+), 1 deletions(-) [+] |
line wrap: on
line diff
--- a/hoareBinaryTree.agda Wed Nov 03 10:32:56 2021 +0900 +++ b/hoareBinaryTree.agda Wed Nov 03 15:58:10 2021 +0900 @@ -24,7 +24,6 @@ iso-intro : {n : Level} {a : Set n} {x y : ℕ} → ¬ (suc x ≤ y) → ¬ (suc y ≤ x) → _iso_ {n} {a} x y iso-intro = λ z z₁ → record { proj1 = z ; proj2 = z₁ } - -- -- -- no children , having left node , having right node , having both @@ -67,3 +66,25 @@ insertTest1 = insertTree leaf 1 1 (λ x → x ) +open import Data.Unit hiding ( _≟_ ; _≤?_ ; _≤_) + +treeInvariant : {n : Level} {A : Set n} → (tree : bt A) → Set +treeInvariant leaf = ⊤ +treeInvariant (node key value leaf leaf) = ⊤ +treeInvariant (node key value leaf n@(node key₁ value₁ t₁ t₂)) = (key < key₁) ∧ treeInvariant n +treeInvariant (node key value n@(node key₁ value₁ t t₁) leaf) = treeInvariant n ∧ (key < key₁) +treeInvariant (node key value n@(node key₁ value₁ t t₁) m@(node key₂ value₂ t₂ t₃)) = treeInvariant n ∧ (key < key₁) ∧ (key₁ < key₂) ∧ treeInvariant m + +treeInvariantTest1 = treeInvariant (node 3 0 leaf (node 1 1 leaf (node 3 5 leaf leaf))) + +stackInvariant : {n : Level} {A : Set n} → (stack : List (bt A)) → Set n +stackInvariant {_} {A} [] = Lift _ ⊤ +stackInvariant {_} {A} (leaf ∷ stack) = Lift _ ⊤ +stackInvariant {_} {A} (node key value leaf leaf ∷ []) = Lift _ ⊤ +stackInvariant {_} {A} (node key value _ (node _ _ _ _) ∷ []) = Lift _ ⊥ +stackInvariant {_} {A} (node key value (node _ _ _ _) _ ∷ []) = Lift _ ⊥ +stackInvariant {_} {A} (x ∷ node key value leaf leaf ∷ tail ) = Lift _ ⊥ +stackInvariant {_} {A} (x ∷ tail @ (node key value leaf tree ∷ _) ) = (tree ≡ x) ∧ stackInvariant tail +stackInvariant {_} {A} (x ∷ tail @ (node key value tree leaf ∷ _) ) = (tree ≡ x) ∧ stackInvariant tail +stackInvariant {_} {A} (x ∷ tail @ (node key value left right ∷ _ )) = ( (left ≡ x) ∧ stackInvariant tail) ∨ ( (right ≡ x) ∧ stackInvariant tail) +stackInvariant {_} {A} s = Lift _ ⊥