Mercurial > hg > Gears > GearsAgda
changeset 775:fb74ba4fa38e
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 11 May 2023 17:52:58 +0900 |
parents | ebd8a73543dd |
children | 576b35b1d2d7 |
files | hoareBinaryTree1.agda |
diffstat | 1 files changed, 67 insertions(+), 110 deletions(-) [+] |
line wrap: on
line diff
--- a/hoareBinaryTree1.agda Tue May 09 23:17:54 2023 +0900 +++ b/hoareBinaryTree1.agda Thu May 11 17:52:58 2023 +0900 @@ -615,10 +615,10 @@ rest : List (bt A) stack=gp : stack ≡ ( self ∷ parent ∷ grand ∷ rest ) -record RBI {n : Level} {A : Set n} (key : ℕ) (value : A) (orig : bt (Color ∧ A) ) (stack : List (bt (Color ∧ A))) : Set n where +record RBI {n : Level} {A : Set n} (key : ℕ) (value : A) (orig repl : bt (Color ∧ A) ) (stack : List (bt (Color ∧ A))) : Set n where field od d rd : ℕ - tree rot repl : bt (Color ∧ A) + tree rot : bt (Color ∧ A) origti : treeInvariant orig origrb : RBtreeInvariant orig od treerb : RBtreeInvariant tree d @@ -731,97 +731,74 @@ → RBtreeInvariant tree ds ∧ RBtreeInvariant (PG.parent pg) dp ∧ RBtreeInvariant (PG.grand pg) dg PGtoRBinvariant = {!!} -findRBT : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree tree0 : bt (Color ∧ A) ) → (stack : List (bt (Color ∧ A))) → {d d0 : ℕ} - → RBtreeInvariant tree0 d0 - → RBtreeInvariant tree d ∧ stackInvariant key tree tree0 stack - → (next : (tree1 : bt (Color ∧ A)) → (stack : List (bt (Color ∧ A))) → {d1 : ℕ} → RBtreeInvariant tree1 d1 ∧ stackInvariant key tree1 tree0 stack → bt-depth tree1 < bt-depth tree → t ) - → (exit : (tree1 : bt (Color ∧ A)) → (stack : List (bt (Color ∧ A))) → {d1 : ℕ} → RBtreeInvariant tree1 d1 ∧ stackInvariant key tree1 tree0 stack - → (tree1 ≡ leaf ) ∨ ( node-key tree1 ≡ just key ) → t ) → t +findRBT : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree : bt (Color ∧ A) ) + → {d : ℕ} → RBtreeInvariant tree d + → (exit : (current : bt (Color ∧ A)) → (stack : List (bt (Color ∧ A))) + → RBI key value tree current stack → t ) → t findRBT = {!!} rotateLeft : {n m : Level} {A : Set n} {t : Set m} - → (key : ℕ) → (value : A) → {d0 : ℕ} - → (orig tree rot repl : bt (Color ∧ A)) {d0 : ℕ} - → RBtreeInvariant orig d0 - → {d : ℕ} → RBtreeInvariant tree d → {dr : ℕ} → RBtreeInvariant repl dr - → (stack : List (bt (Color ∧ A))) → (si : stackInvariant key tree orig stack ) - → rotatedTree tree rot - → replacedRBTree key value (child-replaced key rot) repl - → (next : {key2 d2 : ℕ} {c2 : Color} - → (to tr rot rr : bt (Color ∧ A)) - → RBtreeInvariant orig d0 - → {d : ℕ} → RBtreeInvariant tree d → {dr : ℕ} → RBtreeInvariant rr dr - → (stack1 : List (bt (Color ∧ A))) → stackInvariant key tr to stack1 - → rotatedTree tr rot - → replacedRBTree key value (child-replaced key rot) rr + → (key : ℕ) → (value : A) + → (orig tree : bt (Color ∧ A)) + → (stack : List (bt (Color ∧ A))) + → (r : RBI key value orig tree stack ) + → (next : (tree1 (bt (Color ∧ A))) → (stack1 : List (bt (Color ∧ A))) + → (r : RBI key value orig current stack1 ) → length stack1 < length stack → t ) - → (exit : {k1 d1 : ℕ} {c1 : Color} → (rot repl : bt (Color ∧ A) ) - → {d : ℕ} → RBtreeInvariant repl d - → (ri : rotatedTree orig rot ) → replacedRBTree key value rot repl → t ) → t -rotateLeft {n} {m} {A} {t} key value orig tree rot repl rbo rbt rbr stack si ri rr next exit = rotateLeft1 where + → (exit : (repl : bt (Color ∧ A) ) → (stack1 : List (bt (Color ∧ A))) + → stack1 ≡ (orig ∷ []) + → RBI key value orig repl stack1 + → t ) → t +rotateLeft {n} {m} {A} {t} key value = ? where rotateLeft1 : t - rotateLeft1 with stackToPG tree orig stack si + rotateLeft1 with stackToPG ? orig stack si ... | case1 x = exit {!!} {!!} {!!} {!!} rr ... | case2 (case1 x) = {!!} ... | case2 (case2 pg) = {!!} rotateRight : {n m : Level} {A : Set n} {t : Set m} - → (key : ℕ) → (value : A) → {d0 : ℕ} - → (orig tree rot repl : bt (Color ∧ A)) {d0 : ℕ} - → RBtreeInvariant orig d0 - → {d : ℕ} → RBtreeInvariant tree d → {dr : ℕ} → RBtreeInvariant repl dr - → (stack : List (bt (Color ∧ A))) → (si : stackInvariant key tree orig stack ) - → rotatedTree tree rot - → replacedRBTree key value (child-replaced key rot) repl - → (next : {key2 d2 : ℕ} {c2 : Color} - → (to tr rot rr : bt (Color ∧ A)) - → RBtreeInvariant orig d0 - → {d : ℕ} → RBtreeInvariant tree d → {dr : ℕ} → RBtreeInvariant rr dr - → (stack1 : List (bt (Color ∧ A))) → stackInvariant key tr to stack1 - → rotatedTree tr rot - → replacedRBTree key value (child-replaced key rot) rr + → (key : ℕ) → (value : A) + → (orig tree : bt (Color ∧ A)) + → (stack : List (bt (Color ∧ A))) + → (r : RBI key value orig tree stack ) + → (next : (stack1 : List (bt (Color ∧ A))) + → (r : RBI key value orig stack1 ) → length stack1 < length stack → t ) - → (exit : {k1 d1 : ℕ} {c1 : Color} → (rot repl : bt (Color ∧ A) ) - → {d : ℕ} → RBtreeInvariant repl d - → (ri : rotatedTree orig rot ) → replacedRBTree key value rot repl → t ) → t -rotateRight {n} {m} {A} {t} key value orig tree rot repl rbo rbt rbr stack si ri rr next exit = rotateRight1 where + → (exit : (repl : bt (Color ∧ A) ) → (stack1 : List (bt (Color ∧ A))) + → stack1 ≡ (orig ∷ []) + → RBI key value orig repl stack1 + → t ) → t +rotateRight {n} {m} {A} {t} key value = ? where rotateRight1 : t - rotateRight1 with stackToPG tree orig stack si + rotateRight1 with stackToPG ? ? ? ? ... | case1 x = {!!} ... | case2 (case1 x) = {!!} ... | case2 (case2 pg) = {!!} insertCase5 : {n m : Level} {A : Set n} {t : Set m} - → (key : ℕ) → (value : A) → {d0 : ℕ} - → (orig tree rot repl : bt (Color ∧ A)) {d0 : ℕ} - → RBtreeInvariant orig d0 - → {d : ℕ} → RBtreeInvariant tree d → {dr : ℕ} → RBtreeInvariant repl dr - → (stack : List (bt (Color ∧ A))) → (si : stackInvariant key tree orig stack ) - → rotatedTree tree rot - → replacedRBTree key value (child-replaced key rot) repl - → (next : {key2 d2 : ℕ} {c2 : Color} - → (to tr rot rr : bt (Color ∧ A)) - → RBtreeInvariant orig d0 - → {d : ℕ} → RBtreeInvariant tree d → {dr : ℕ} → RBtreeInvariant rr dr - → (stack1 : List (bt (Color ∧ A))) → stackInvariant key tr to stack1 - → rotatedTree tr rot - → replacedRBTree key value (child-replaced key rot) rr + → (key : ℕ) → (value : A) + → (orig tree : bt (Color ∧ A)) + → (stack : List (bt (Color ∧ A))) + → (r : RBI key value orig tree stack ) + → (next : (tree1 (bt (Color ∧ A))) (stack1 : List (bt (Color ∧ A))) + → (r : RBI key value orig tree1 stack1 ) → length stack1 < length stack → t ) - → (exit : {k1 d1 : ℕ} {c1 : Color} → (rot repl : bt (Color ∧ A) ) - → {d : ℕ} → RBtreeInvariant repl d - → (ri : rotatedTree orig rot ) → replacedRBTree key value rot repl → t ) → t -insertCase5 {n} {m} {A} {t} key value orig tree rot repl rbo rbt rbr stack si ri rr next exit = insertCase51 where + → (exit : (repl : bt (Color ∧ A) ) → (stack1 : List (bt (Color ∧ A))) + → stack1 ≡ (orig ∷ []) + → RBI key value orig repl stack1 + → t ) → t +insertCase5 {n} {m} {A} {t} key value = ? where insertCase51 : t - insertCase51 with stackToPG tree orig stack si + insertCase51 with stackToPG ? orig stack ? ... | case1 eq = {!!} ... | case2 (case1 eq ) = {!!} ... | case2 (case2 pg) with PG.pg pg - ... | s2-s1p2 x x₁ = rotateRight {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} next exit + ... | s2-s1p2 x x₁ = ? -- rotateRight {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} next exit -- x : PG.parent pg ≡ node kp vp tree n1 -- x₁ : PG.grand pg ≡ node kg vg (PG.parent pg) (PG.uncle pg) - ... | s2-1sp2 x x₁ = rotateLeft {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} next exit - ... | s2-s12p x x₁ = rotateLeft {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} next exit - ... | s2-1s2p x x₁ = rotateLeft {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} next exit + ... | s2-1sp2 x x₁ = ? -- rotateLeft {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} next exit + ... | s2-s12p x x₁ = ? -- rotateLeft {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} next exit + ... | s2-1s2p x x₁ = ? -- rotateLeft {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} next exit -- = insertCase2 tree (PG.parent pg) (PG.uncle pg) (PG.grand pg) stack si (PG.pg pg) @@ -829,7 +806,7 @@ replaceRBP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) - → (orig : bt (Color ∧ A)) + → (orig repl : bt (Color ∧ A)) → (stack : List (bt (Color ∧ A))) → (r : RBI key value orig stack ) → (next : (stack1 : List (bt (Color ∧ A))) @@ -839,28 +816,7 @@ → stack1 ≡ (orig ∷ []) → RBI key value orig stack1 → t ) → t -replaceRBP = ? - -replaceRBP' : {n m : Level} {A : Set n} {t : Set m} - → (key : ℕ) → (value : A) - → (to tr rot rr : bt (Color ∧ A)) - → {d0 : ℕ} → RBtreeInvariant to d0 - → {d : ℕ} → RBtreeInvariant tr d → {dr : ℕ} → RBtreeInvariant rr dr - → (stack : List (bt (Color ∧ A))) → stackInvariant key tr to stack - → rotatedTree tr rot - → replacedRBTree key value (child-replaced key rot) rr - → (next : {key2 d2 : ℕ} {c2 : Color} - → (to tr rot rr : bt (Color ∧ A)) - → RBtreeInvariant to d0 - → {d : ℕ} → RBtreeInvariant tr d → {dr : ℕ} → RBtreeInvariant rr dr - → (stack1 : List (bt (Color ∧ A))) → stackInvariant key tr to stack1 - → rotatedTree tr rot - → replacedRBTree key value (child-replaced key rot) rr - → length stack1 < length stack → t ) - → (exit : (rot repl : bt (Color ∧ A) ) - → {d : ℕ} → RBtreeInvariant repl d - → (ri : rotatedTree to rot ) → replacedRBTree key value (child-replaced key rot) repl → t ) → t -replaceRBP' {n} {m} {A} {t} key value orig tree rot repl rbio rbit rbir stack si roti ri next exit = ? where +replaceRBP {n} {m} {A} {t} key value orig stack r next exit = ? where insertCase2 : (tree parent uncle grand : bt (Color ∧ A)) → (stack : List (bt (Color ∧ A))) → (si : stackInvariant key tree orig stack ) → (pg : ParentGrand tree parent uncle grand ) → t @@ -868,41 +824,42 @@ insertCase2 tree leaf uncle grand stack si (s2-1sp2 () x₁) insertCase2 tree leaf uncle grand stack si (s2-s12p () x₁) insertCase2 tree leaf uncle grand stack si (s2-1s2p () x₁) - insertCase2 tree parent@(node kp ⟪ Red , _ ⟫ _ _) uncle grand stack si pg = next {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} + insertCase2 tree parent@(node kp ⟪ Red , _ ⟫ _ _) uncle grand stack si pg = ? -- next {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} insertCase2 tree parent@(node kp ⟪ Black , _ ⟫ _ _) leaf grand stack si pg = {!!} - insertCase2 tree parent@(node kp ⟪ Black , _ ⟫ _ _) (node ku ⟪ Red , _ ⟫ _ _ ) grand stack si pg = next {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} - insertCase2 tree parent@(node kp ⟪ Black , _ ⟫ _ _) (node ku ⟪ Black , _ ⟫ _ _) grand stack si (s2-s1p2 x x₁) = - insertCase5 key value orig tree {!!} repl rbio {!!} {!!} stack si {!!} ri {!!} {!!} next exit + insertCase2 tree parent@(node kp ⟪ Black , _ ⟫ _ _) (node ku ⟪ Red , _ ⟫ _ _ ) grand stack si pg = ? -- next {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} + insertCase2 tree parent@(node kp ⟪ Black , _ ⟫ _ _) (node ku ⟪ Black , _ ⟫ _ _) grand stack si (s2-s1p2 x x₁) = ? + -- insertCase5 key value orig tree {!!} rbio {!!} {!!} stack si {!!} ri {!!} {!!} next exit -- tree is left of parent, parent is left of grand -- node kp ⟪ Black , proj3 ⟫ left right ≡ node kp₁ vp tree n1 -- grand ≡ node kg vg (node kp ⟪ Black , proj3 ⟫ left right) (node ku ⟪ Black , proj4 ⟫ left₁ right₁) - insertCase2 tree parent@(node kp ⟪ Black , _ ⟫ _ _) (node ku ⟪ Black , _ ⟫ _ _) grand stack si (s2-1sp2 x x₁) = - rotateLeft key value orig tree {!!} repl rbio {!!} {!!} stack si {!!} ri {!!} {!!} - (λ a b c d e f h i j k l m → insertCase5 key value a b c d {!!} {!!} h i j k l {!!} {!!} next exit ) exit + insertCase2 tree parent@(node kp ⟪ Black , _ ⟫ _ _) (node ku ⟪ Black , _ ⟫ _ _) grand stack si (s2-1sp2 x x₁) = ? + -- rotateLeft key value orig tree {!!} repl rbio {!!} {!!} stack si {!!} ri {!!} {!!} + -- (λ a b c d e f h i j k l m → insertCase5 key value a b c d {!!} {!!} h i j k l {!!} {!!} next exit ) exit -- tree is right of parent, parent is left of grand rotateLeft -- node kp ⟪ Black , proj3 ⟫ left right ≡ node kp₁ vp n1 tree -- grand ≡ node kg vg (node kp ⟪ Black , proj3 ⟫ left right) (node ku ⟪ Black , proj4 ⟫ left₁ right₁) - insertCase2 tree parent@(node kp ⟪ Black , _ ⟫ _ _) (node ku ⟪ Black , _ ⟫ _ _) grand stack si (s2-s12p x x₁) = - rotateRight key value orig tree {!!} repl rbio {!!} {!!} stack si {!!} ri {!!} {!!} - (λ a b c d e f h i j k l m → insertCase5 key value a b c d {!!} {!!} h i j k l {!!} {!!} next exit ) exit + insertCase2 tree parent@(node kp ⟪ Black , _ ⟫ _ _) (node ku ⟪ Black , _ ⟫ _ _) grand stack si (s2-s12p x x₁) = ? + -- rotateRight key value orig tree {!!} repl rbio {!!} {!!} stack si {!!} ri {!!} {!!} + -- (λ a b c d e f h i j k l m → insertCase5 key value a b c d {!!} {!!} h i j k l {!!} {!!} next exit ) exit -- tree is left of parent, parent is right of grand, rotateRight -- node kp ⟪ Black , proj3 ⟫ left right ≡ node kp₁ vp tree n1 -- grand ≡ node kg vg (node ku ⟪ Black , proj4 ⟫ left₁ right₁) (node kp ⟪ Black , proj3 ⟫ left right) - insertCase2 tree parent@(node kp ⟪ Black , _ ⟫ _ _) (node ku ⟪ Black , _ ⟫ _ _) grand stack si (s2-1s2p x x₁) = - insertCase5 key value orig tree {!!} repl rbio {!!} {!!} stack si {!!} ri {!!} {!!} next exit + insertCase2 tree parent@(node kp ⟪ Black , _ ⟫ _ _) (node ku ⟪ Black , _ ⟫ _ _) grand stack si (s2-1s2p x x₁) = ? + -- insertCase5 key value orig tree {!!} repl rbio {!!} {!!} stack si {!!} ri {!!} {!!} next exit -- tree is right of parent, parent is right of grand -- node kp ⟪ Black , proj3 ⟫ left right ≡ node kp₁ vp n1 tree -- grand ≡ node kg vg (node ku ⟪ Black , proj4 ⟫ left₁ right₁) (node kp ⟪ Black , proj3 ⟫ left right) insertCase1 : t - insertCase1 with stackToPG tree orig stack si - ... | case1 eq = exit rot repl rbir (subst (λ k → rotatedTree k rot) (stackCase1 si eq) roti) ri + insertCase1 with stackToPG ? orig stack ? + ... | case1 eq = ? -- exit rot repl rbir (subst (λ k → rotatedTree k rot) (stackCase1 si eq) roti) ri ... | case2 (case1 eq ) = ? where insertCase12 : (to : bt (Color ∧ A)) → {d : ℕ} → RBtreeInvariant orig d → to ≡ orig - → (rr : bt (Color ∧ A)) → {dr : ℕ} → RBtreeInvariant repl dr → rr ≡ repl - → {stack : List (bt (Color ∧ A))} → (si : stackInvariant key tree to stack ) - → stack ≡ tree ∷ to ∷ [] → t + → (rr : bt (Color ∧ A)) → {dr : ℕ} → RBtreeInvariant ? dr → rr ≡ ? + → {stack : List (bt (Color ∧ A))} → (si : stackInvariant key ? to stack ) + → stack ≡ ? ∷ to ∷ [] → t insertCase12 = ? -- exit rot repl rbir ? ? - ... | case2 (case2 pg) = insertCase2 tree (PG.parent pg) (PG.uncle pg) (PG.grand pg) stack si (PG.pg pg) + ... | case2 (case2 pg) = ? -- insertCase2 tree (PG.parent pg) (PG.uncle pg) (PG.grand pg) stack si (PG.pg pg) +