Mercurial > hg > GearsTemplate
comparison src/parallel_execution/stack.agda @ 590:9146d6017f18 default tip
hg mv parallel_execution/* ..
author | anatofuz <anatofuz@cr.ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 16 Jan 2020 15:12:06 +0900 |
parents | a4cab67624f7 |
children |
comparison
equal
deleted
inserted
replaced
589:a4cab67624f7 | 590:9146d6017f18 |
---|---|
1 open import Level renaming (suc to succ ; zero to Zero ) | |
2 module stack where | |
3 | |
4 open import Relation.Binary.PropositionalEquality | |
5 open import Relation.Binary.Core | |
6 open import Data.Nat | |
7 | |
8 ex : 1 + 2 ≡ 3 | |
9 ex = refl | |
10 | |
11 data Bool {n : Level } : Set n where | |
12 True : Bool | |
13 False : Bool | |
14 | |
15 record _∧_ {n : Level } (a : Set n) (b : Set n): Set n where | |
16 field | |
17 pi1 : a | |
18 pi2 : b | |
19 | |
20 data Maybe {n : Level } (a : Set n) : Set n where | |
21 Nothing : Maybe a | |
22 Just : a -> Maybe a | |
23 | |
24 record StackMethods {n m : Level } (a : Set n ) {t : Set m }(stackImpl : Set n ) : Set (m Level.⊔ n) where | |
25 field | |
26 push : stackImpl -> a -> (stackImpl -> t) -> t | |
27 pop : stackImpl -> (stackImpl -> Maybe a -> t) -> t | |
28 pop2 : stackImpl -> (stackImpl -> Maybe a -> Maybe a -> t) -> t | |
29 get : stackImpl -> (stackImpl -> Maybe a -> t) -> t | |
30 get2 : stackImpl -> (stackImpl -> Maybe a -> Maybe a -> t) -> t | |
31 open StackMethods | |
32 | |
33 record Stack {n m : Level } (a : Set n ) {t : Set m } (si : Set n ) : Set (m Level.⊔ n) where | |
34 field | |
35 stack : si | |
36 stackMethods : StackMethods {n} {m} a {t} si | |
37 pushStack : a -> (Stack a si -> t) -> t | |
38 pushStack d next = push (stackMethods ) (stack ) d (\s1 -> next (record {stack = s1 ; stackMethods = stackMethods } )) | |
39 popStack : (Stack a si -> Maybe a -> t) -> t | |
40 popStack next = pop (stackMethods ) (stack ) (\s1 d1 -> next (record {stack = s1 ; stackMethods = stackMethods }) d1 ) | |
41 pop2Stack : (Stack a si -> Maybe a -> Maybe a -> t) -> t | |
42 pop2Stack next = pop2 (stackMethods ) (stack ) (\s1 d1 d2 -> next (record {stack = s1 ; stackMethods = stackMethods }) d1 d2) | |
43 getStack : (Stack a si -> Maybe a -> t) -> t | |
44 getStack next = get (stackMethods ) (stack ) (\s1 d1 -> next (record {stack = s1 ; stackMethods = stackMethods }) d1 ) | |
45 get2Stack : (Stack a si -> Maybe a -> Maybe a -> t) -> t | |
46 get2Stack next = get2 (stackMethods ) (stack ) (\s1 d1 d2 -> next (record {stack = s1 ; stackMethods = stackMethods }) d1 d2) | |
47 | |
48 open Stack | |
49 | |
50 data Element {n : Level } (a : Set n) : Set n where | |
51 cons : a -> Maybe (Element a) -> Element a | |
52 | |
53 datum : {n : Level } {a : Set n} -> Element a -> a | |
54 datum (cons a _) = a | |
55 | |
56 next : {n : Level } {a : Set n} -> Element a -> Maybe (Element a) | |
57 next (cons _ n) = n | |
58 | |
59 | |
60 {- | |
61 -- cannot define recrusive record definition. so use linked list with maybe. | |
62 record Element {l : Level} (a : Set n l) : Set n (suc l) where | |
63 field | |
64 datum : a -- `data` is reserved by Agda. | |
65 next : Maybe (Element a) | |
66 -} | |
67 | |
68 | |
69 | |
70 record SingleLinkedStack {n : Level } (a : Set n) : Set n where | |
71 field | |
72 top : Maybe (Element a) | |
73 open SingleLinkedStack | |
74 | |
75 pushSingleLinkedStack : {n m : Level } {t : Set m } {Data : Set n} -> SingleLinkedStack Data -> Data -> (Code : SingleLinkedStack Data -> t) -> t | |
76 pushSingleLinkedStack stack datum next = next stack1 | |
77 where | |
78 element = cons datum (top stack) | |
79 stack1 = record {top = Just element} | |
80 | |
81 | |
82 popSingleLinkedStack : {n m : Level } {t : Set m } {a : Set n} -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> t) -> t | |
83 popSingleLinkedStack stack cs with (top stack) | |
84 ... | Nothing = cs stack Nothing | |
85 ... | Just d = cs stack1 (Just data1) | |
86 where | |
87 data1 = datum d | |
88 stack1 = record { top = (next d) } | |
89 | |
90 pop2SingleLinkedStack : {n m : Level } {t : Set m } {a : Set n} -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> (Maybe a) -> t) -> t | |
91 pop2SingleLinkedStack {n} {m} {t} {a} stack cs with (top stack) | |
92 ... | Nothing = cs stack Nothing Nothing | |
93 ... | Just d = pop2SingleLinkedStack' {n} {m} stack cs | |
94 where | |
95 pop2SingleLinkedStack' : {n m : Level } {t : Set m } -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> (Maybe a) -> t) -> t | |
96 pop2SingleLinkedStack' stack cs with (next d) | |
97 ... | Nothing = cs stack Nothing Nothing | |
98 ... | Just d1 = cs (record {top = (next d1)}) (Just (datum d)) (Just (datum d1)) | |
99 | |
100 | |
101 getSingleLinkedStack : {n m : Level } {t : Set m } {a : Set n} -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> t) -> t | |
102 getSingleLinkedStack stack cs with (top stack) | |
103 ... | Nothing = cs stack Nothing | |
104 ... | Just d = cs stack (Just data1) | |
105 where | |
106 data1 = datum d | |
107 | |
108 get2SingleLinkedStack : {n m : Level } {t : Set m } {a : Set n} -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> (Maybe a) -> t) -> t | |
109 get2SingleLinkedStack {n} {m} {t} {a} stack cs with (top stack) | |
110 ... | Nothing = cs stack Nothing Nothing | |
111 ... | Just d = get2SingleLinkedStack' {n} {m} stack cs | |
112 where | |
113 get2SingleLinkedStack' : {n m : Level} {t : Set m } -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> (Maybe a) -> t) -> t | |
114 get2SingleLinkedStack' stack cs with (next d) | |
115 ... | Nothing = cs stack Nothing Nothing | |
116 ... | Just d1 = cs stack (Just (datum d)) (Just (datum d1)) | |
117 | |
118 | |
119 | |
120 emptySingleLinkedStack : {n : Level } {a : Set n} -> SingleLinkedStack a | |
121 emptySingleLinkedStack = record {top = Nothing} | |
122 | |
123 ----- | |
124 -- Basic stack implementations are specifications of a Stack | |
125 -- | |
126 singleLinkedStackSpec : {n m : Level } {t : Set m } {a : Set n} -> StackMethods {n} {m} a {t} (SingleLinkedStack a) | |
127 singleLinkedStackSpec = record { | |
128 push = pushSingleLinkedStack | |
129 ; pop = popSingleLinkedStack | |
130 ; pop2 = pop2SingleLinkedStack | |
131 ; get = getSingleLinkedStack | |
132 ; get2 = get2SingleLinkedStack | |
133 } | |
134 | |
135 createSingleLinkedStack : {n m : Level } {t : Set m } {a : Set n} -> Stack {n} {m} a {t} (SingleLinkedStack a) | |
136 createSingleLinkedStack = record { | |
137 stack = emptySingleLinkedStack ; | |
138 stackMethods = singleLinkedStackSpec | |
139 } | |
140 | |
141 ---- | |
142 -- | |
143 -- proof of properties ( concrete cases ) | |
144 -- | |
145 | |
146 test01 : {n : Level } {a : Set n} -> SingleLinkedStack a -> Maybe a -> Bool {n} | |
147 test01 stack _ with (top stack) | |
148 ... | (Just _) = True | |
149 ... | Nothing = False | |
150 | |
151 | |
152 test02 : {n : Level } {a : Set n} -> SingleLinkedStack a -> Bool | |
153 test02 stack = popSingleLinkedStack stack test01 | |
154 | |
155 test03 : {n : Level } {a : Set n} -> a -> Bool | |
156 test03 v = pushSingleLinkedStack emptySingleLinkedStack v test02 | |
157 | |
158 -- after a push and a pop, the stack is empty | |
159 lemma : {n : Level} {A : Set n} {a : A} -> test03 a ≡ False | |
160 lemma = refl | |
161 | |
162 testStack01 : {n m : Level } {a : Set n} -> a -> Bool {m} | |
163 testStack01 v = pushStack createSingleLinkedStack v ( | |
164 \s -> popStack s (\s1 d1 -> True)) | |
165 | |
166 -- after push 1 and 2, pop2 get 1 and 2 | |
167 | |
168 testStack02 : {m : Level } -> ( Stack ℕ (SingleLinkedStack ℕ) -> Bool {m} ) -> Bool {m} | |
169 testStack02 cs = pushStack createSingleLinkedStack 1 ( | |
170 \s -> pushStack s 2 cs) | |
171 | |
172 | |
173 testStack031 : (d1 d2 : ℕ ) -> Bool {Zero} | |
174 testStack031 2 1 = True | |
175 testStack031 _ _ = False | |
176 | |
177 testStack032 : (d1 d2 : Maybe ℕ) -> Bool {Zero} | |
178 testStack032 (Just d1) (Just d2) = testStack031 d1 d2 | |
179 testStack032 _ _ = False | |
180 | |
181 testStack03 : {m : Level } -> Stack ℕ (SingleLinkedStack ℕ) -> ((Maybe ℕ) -> (Maybe ℕ) -> Bool {m} ) -> Bool {m} | |
182 testStack03 s cs = pop2Stack s ( | |
183 \s d1 d2 -> cs d1 d2 ) | |
184 | |
185 testStack04 : Bool | |
186 testStack04 = testStack02 (\s -> testStack03 s testStack032) | |
187 | |
188 testStack05 : testStack04 ≡ True | |
189 testStack05 = refl | |
190 | |
191 ------ | |
192 -- | |
193 -- proof of properties with indefinite state of stack | |
194 -- | |
195 -- this should be proved by properties of the stack inteface, not only by the implementation, | |
196 -- and the implementation have to provides the properties. | |
197 -- | |
198 -- we cannot write "s ≡ s3", since level of the Set does not fit , but use stack s ≡ stack s3 is ok. | |
199 -- anyway some implementations may result s != s3 | |
200 -- | |
201 | |
202 stackInSomeState : {l m : Level } {D : Set l} {t : Set m } (s : SingleLinkedStack D ) -> Stack {l} {m} D {t} ( SingleLinkedStack D ) | |
203 stackInSomeState s = record { stack = s ; stackMethods = singleLinkedStackSpec } | |
204 | |
205 push->push->pop2 : {l : Level } {D : Set l} (x y : D ) (s : SingleLinkedStack D ) -> | |
206 pushStack ( stackInSomeState s ) x ( \s1 -> pushStack s1 y ( \s2 -> pop2Stack s2 ( \s3 y1 x1 -> (Just x ≡ x1 ) ∧ (Just y ≡ y1 ) ) )) | |
207 push->push->pop2 {l} {D} x y s = record { pi1 = refl ; pi2 = refl } | |
208 | |
209 | |
210 id : {n : Level} {A : Set n} -> A -> A | |
211 id a = a | |
212 | |
213 -- push a, n times | |
214 | |
215 n-push : {n : Level} {A : Set n} {a : A} -> ℕ -> SingleLinkedStack A -> SingleLinkedStack A | |
216 n-push zero s = s | |
217 n-push {l} {A} {a} (suc n) s = pushSingleLinkedStack (n-push {l} {A} {a} n s) a (\s -> s ) | |
218 | |
219 n-pop : {n : Level}{A : Set n} {a : A} -> ℕ -> SingleLinkedStack A -> SingleLinkedStack A | |
220 n-pop zero s = s | |
221 n-pop {_} {A} {a} (suc n) s = popSingleLinkedStack (n-pop {_} {A} {a} n s) (\s _ -> s ) | |
222 | |
223 open ≡-Reasoning | |
224 | |
225 push-pop-equiv : {n : Level} {A : Set n} {a : A} (s : SingleLinkedStack A) -> (popSingleLinkedStack (pushSingleLinkedStack s a (\s -> s)) (\s _ -> s) ) ≡ s | |
226 push-pop-equiv s = refl | |
227 | |
228 push-and-n-pop : {n : Level} {A : Set n} {a : A} (n : ℕ) (s : SingleLinkedStack A) -> n-pop {_} {A} {a} (suc n) (pushSingleLinkedStack s a id) ≡ n-pop {_} {A} {a} n s | |
229 push-and-n-pop zero s = refl | |
230 push-and-n-pop {_} {A} {a} (suc n) s = begin | |
231 n-pop {_} {A} {a} (suc (suc n)) (pushSingleLinkedStack s a id) | |
232 ≡⟨ refl ⟩ | |
233 popSingleLinkedStack (n-pop {_} {A} {a} (suc n) (pushSingleLinkedStack s a id)) (\s _ -> s) | |
234 ≡⟨ cong (\s -> popSingleLinkedStack s (\s _ -> s )) (push-and-n-pop n s) ⟩ | |
235 popSingleLinkedStack (n-pop {_} {A} {a} n s) (\s _ -> s) | |
236 ≡⟨ refl ⟩ | |
237 n-pop {_} {A} {a} (suc n) s | |
238 ∎ | |
239 | |
240 | |
241 n-push-pop-equiv : {n : Level} {A : Set n} {a : A} (n : ℕ) (s : SingleLinkedStack A) -> (n-pop {_} {A} {a} n (n-push {_} {A} {a} n s)) ≡ s | |
242 n-push-pop-equiv zero s = refl | |
243 n-push-pop-equiv {_} {A} {a} (suc n) s = begin | |
244 n-pop {_} {A} {a} (suc n) (n-push (suc n) s) | |
245 ≡⟨ refl ⟩ | |
246 n-pop {_} {A} {a} (suc n) (pushSingleLinkedStack (n-push n s) a (\s -> s)) | |
247 ≡⟨ push-and-n-pop n (n-push n s) ⟩ | |
248 n-pop {_} {A} {a} n (n-push n s) | |
249 ≡⟨ n-push-pop-equiv n s ⟩ | |
250 s | |
251 ∎ | |
252 | |
253 | |
254 n-push-pop-equiv-empty : {n : Level} {A : Set n} {a : A} -> (n : ℕ) -> n-pop {_} {A} {a} n (n-push {_} {A} {a} n emptySingleLinkedStack) ≡ emptySingleLinkedStack | |
255 n-push-pop-equiv-empty n = n-push-pop-equiv n emptySingleLinkedStack |