view src/parallel_execution/RedBlackTree.agda @ 478:0223c07c3946

fix stack.agda
author ryokka
date Thu, 28 Dec 2017 19:08:04 +0900
parents ff4ab9add959
children 044c25475ed4
line wrap: on
line source

module RedBlackTree where

open import stack

record Tree {a t : Set} (treeImpl : Set) : Set  where
  field
    tree : treeImpl
    putImpl : treeImpl -> a -> (treeImpl -> t) -> t
    getImpl  : treeImpl -> (treeImpl -> Maybe a -> t) -> t

open Tree


putTree : {a t : Set} -> Tree -> a -> (Tree -> t) -> t
putTree {a} {t} t0 d next = (putImpl t0) (tree t0) d (\t1 -> next (record t0 {tree = t1} ))

getTree : {a t : Set} -> Tree -> (Tree -> t) -> t
getTree {a} {t} t0  next = (getImpl t0) (tree t0) (\t1 -> next t0)


data Color : Set where
  Red   : Color
  Black : Color

record Node (a : Set) : Set where
  field
    node  : Element a
    right : Maybe (Node a)
    left  : Maybe (Node a)
    color : Color

record RedBlackTree (a : Set) : Set where
  field
    root : Maybe (Node a)
    stack : Stack

open RedBlackTree

insertNode : ?
insertNode tree datum next = get2 (stack tree) (\ s d1 d2 -> insertCase1 ( record { root = root tree; stack = s }) datum d1 d2 next)

putRedBlackTree : {Data t : Set} -> RedBlackTree Data -> Data -> (Code : RedBlackTree Data -> t) -> t
putRedBlackTree tree datum next with (root tree)
...                                | Nothing = insertNode tree datum next
...                                | Just n  = findNode tree datum n (\ tree1 -> insertNode tree1 datum next)

findNode : {Data t : Set} -> RedBlackTree Data -> Data -> Node Data -> (Code : RedBlackTree Data (RedBlackTree Data -> t) -> t) -> t
findNode tree datum n next = pushStack (stack tree) n (\ s -> findNode1 (record tree {stack = s }) datum n next)

findNode1 : {Data t : Set} -> RedBlackTree Data -> Data -> Data -> (Code : RedBlackTree Data (RedBlackTree Data -> t) -> t) -> t
findNode1 tree datum n next with (compare datum n)
...                                | EQ = popStack (tree stack) (\s d -> findNode3 d (record tree { root = just (record n {node = datum}); stack = s }) next)
...                                | GT = findNode2 tree datum (right n) next
...                                | LT = findNode2 tree datum (left n) next
  where
    findNode2 tree datum nothing next = insertNode tree datum next
    findNode2 tree datum (just n) next = findNode (record tree {root = just n}) datum n next
    findNode3 nothing tree next = next tree
    findNode3 (just n) tree next = 
           popStack (tree stack) (\s d -> findNode3 d (record { root = record n {right = ? } }))


insertCase1 tree datum nothing grandparent next = next (record { root = ?; stack = createSingleLinkedStack })
insertCase1 tree datum (just parent) grandparent next = insertCase2 tree datum parent grandparent next

insertCase2 tree datum parent grandparent next with (color parent)
...                                | Red = insertCase3 tree datum parent grandparent next
...                                | Black = next (record { root = ?; stack = createSingleLinkedStack })

insertCase3 tree datum parent grandparent next 

getRedBlackTree : {a t : Set} -> RedBlackTree a -> (Code : RedBlackTree a -> (Maybe a) -> t) -> t
getRedBlackTree tree cs with (root tree)
...                                | Nothing = cs tree  Nothing
...                                | Just d  = cs stack1 (Just data1)
  where
    data1  = datum d
    stack1 = record { root = (next d) }