Mercurial > hg > GearsTemplate
view src/parallel_execution/stack.agda @ 502:8d997f0c9b2c
stack.agda comment
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 01 Jan 2018 18:58:05 +0900 |
parents | 55077dd40a51 |
children | 413ce51da50b |
line wrap: on
line source
open import Level renaming (suc to succ ; zero to Zero ) module stack where open import Relation.Binary.PropositionalEquality open import Relation.Binary.Core open import Data.Nat ex : 1 + 2 ≡ 3 ex = refl data Bool {n : Level } : Set n where True : Bool False : Bool record _∧_ {n : Level } (a : Set n) (b : Set n): Set n where field pi1 : a pi2 : b data Maybe {n : Level } (a : Set n) : Set n where Nothing : Maybe a Just : a -> Maybe a record Stack {n m : Level } {a : Set n } {t : Set m }(stackImpl : Set n ) : Set (m Level.⊔ n) where field stack : stackImpl push : stackImpl -> a -> (stackImpl -> t) -> t pop : stackImpl -> (stackImpl -> Maybe a -> t) -> t pop2 : stackImpl -> (stackImpl -> Maybe a -> Maybe a -> t) -> t get : stackImpl -> (stackImpl -> Maybe a -> t) -> t get2 : stackImpl -> (stackImpl -> Maybe a -> Maybe a -> t) -> t open Stack pushStack : {n m : Level } {t : Set m} {a si : Set n} -> Stack si -> a -> (Stack si -> t) -> t pushStack s0 d next = push s0 (stack s0) d (\s1 -> next (record s0 {stack = s1} )) popStack : {n m : Level } { t : Set m} {a si : Set n} -> Stack si -> (Stack si -> Maybe a -> t) -> t popStack s0 next = pop s0 (stack s0) (\s1 d1 -> next (record s0 {stack = s1}) d1 ) pop2Stack : {n m : Level } { t : Set m} { a si : Set n} -> Stack si -> (Stack si -> Maybe a -> Maybe a -> t) -> t pop2Stack s0 next = pop2 s0 (stack s0) (\s1 d1 d2 -> next (record s0 {stack = s1}) d1 d2) getStack : {n m : Level } {t : Set m} {a si : Set n} -> Stack si -> (Stack si -> Maybe a -> t) -> t getStack s0 next = get s0 (stack s0) (\s1 d1 -> next (record s0 {stack = s1}) d1 ) get2Stack : {n m : Level } {t : Set m} {a si : Set n} -> Stack si -> (Stack si -> Maybe a -> Maybe a -> t) -> t get2Stack s0 next = get2 s0 (stack s0) (\s1 d1 d2 -> next (record s0 {stack = s1}) d1 d2) data Element {n : Level } (a : Set n) : Set n where cons : a -> Maybe (Element a) -> Element a datum : {n : Level } {a : Set n} -> Element a -> a datum (cons a _) = a next : {n : Level } {a : Set n} -> Element a -> Maybe (Element a) next (cons _ n) = n {- -- cannot define recrusive record definition. so use linked list with maybe. record Element {l : Level} (a : Set n l) : Set n (suc l) where field datum : a -- `data` is reserved by Agda. next : Maybe (Element a) -} record SingleLinkedStack {n : Level } (a : Set n) : Set n where field top : Maybe (Element a) open SingleLinkedStack pushSingleLinkedStack : {n m : Level } {t : Set m } {Data : Set n} -> SingleLinkedStack Data -> Data -> (Code : SingleLinkedStack Data -> t) -> t pushSingleLinkedStack stack datum next = next stack1 where element = cons datum (top stack) stack1 = record {top = Just element} popSingleLinkedStack : {n m : Level } {t : Set m } {a : Set n} -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> t) -> t popSingleLinkedStack stack cs with (top stack) ... | Nothing = cs stack Nothing ... | Just d = cs stack1 (Just data1) where data1 = datum d stack1 = record { top = (next d) } pop2SingleLinkedStack : {n m : Level } {t : Set m } {a : Set n} -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> (Maybe a) -> t) -> t pop2SingleLinkedStack {n} {m} {t} {a} stack cs with (top stack) ... | Nothing = cs stack Nothing Nothing ... | Just d = pop2SingleLinkedStack' {n} {m} stack cs where pop2SingleLinkedStack' : {n m : Level } {t : Set m } -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> (Maybe a) -> t) -> t pop2SingleLinkedStack' stack cs with (next d) ... | Nothing = cs stack Nothing Nothing ... | Just d1 = cs (record {top = (next d)}) (Just (datum d)) (Just (datum d1)) getSingleLinkedStack : {n m : Level } {t : Set m } {a : Set n} -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> t) -> t getSingleLinkedStack stack cs with (top stack) ... | Nothing = cs stack Nothing ... | Just d = cs stack (Just data1) where data1 = datum d get2SingleLinkedStack : {n m : Level } {t : Set m } {a : Set n} -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> (Maybe a) -> t) -> t get2SingleLinkedStack {n} {m} {t} {a} stack cs with (top stack) ... | Nothing = cs stack Nothing Nothing ... | Just d = get2SingleLinkedStack' {n} {m} stack cs where get2SingleLinkedStack' : {n m : Level} {t : Set m } -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> (Maybe a) -> t) -> t get2SingleLinkedStack' stack cs with (next d) ... | Nothing = cs stack Nothing Nothing ... | Just d1 = cs stack (Just (datum d)) (Just (datum d1)) emptySingleLinkedStack : {n : Level } {a : Set n} -> SingleLinkedStack a emptySingleLinkedStack = record {top = Nothing} createSingleLinkedStack : {n m : Level } {t : Set m } {a : Set n} -> Stack {n} {m} {a} {t} (SingleLinkedStack a) createSingleLinkedStack = record { stack = emptySingleLinkedStack ; push = pushSingleLinkedStack ; pop = popSingleLinkedStack ; pop2 = pop2SingleLinkedStack ; get = getSingleLinkedStack ; get2 = get2SingleLinkedStack } test01 : {n : Level } {a : Set n} -> SingleLinkedStack a -> Maybe a -> Bool {n} test01 stack _ with (top stack) ... | (Just _) = True ... | Nothing = False test02 : {n : Level } {a : Set n} -> SingleLinkedStack a -> Bool test02 stack = popSingleLinkedStack stack test01 test03 : {n : Level } {a : Set n} -> a -> Bool test03 v = pushSingleLinkedStack emptySingleLinkedStack v test02 -- after a push and a pop, the stack is empty lemma : {n : Level} {A : Set n} {a : A} -> test03 a ≡ False lemma = refl testStack01 : {n m : Level } {a : Set n} -> a -> Bool {m} testStack01 v = pushStack createSingleLinkedStack v ( \s -> popStack s (\s1 d1 -> True)) -- after push 1 and 2, pop2 get 1 and 2 testStack02 : {m : Level } -> ( Stack (SingleLinkedStack ℕ) -> Bool {m} ) -> Bool {m} testStack02 cs = pushStack createSingleLinkedStack 1 ( \s -> pushStack s 2 cs) testStack031 : (d1 d2 : ℕ ) -> Bool {Zero} testStack031 2 1 = True testStack031 _ _ = False testStack032 : (d1 d2 : Maybe ℕ) -> Bool {Zero} testStack032 (Just d1) (Just d2) = testStack031 d1 d2 testStack032 _ _ = False testStack03 : {m : Level } -> Stack (SingleLinkedStack ℕ) -> ((Maybe ℕ) -> (Maybe ℕ) -> Bool {m} ) -> Bool {m} testStack03 s cs = pop2Stack s ( \s d1 d2 -> cs d1 d2 ) testStack04 : Bool testStack04 = testStack02 (\s -> testStack03 s testStack032) testStack05 : testStack04 ≡ True testStack05 = refl ------ -- push->push->pop2 : {l : Level } {D : Set l} (x y : D ) (s : Stack (SingleLinkedStack D) ) -> -- pushStack s x ( \s1 -> pushStack s1 y ( \s2 -> pop2Stack s2 ( \s3 y1 x1 -> ((stack s ≡ stack s3 ) ∧ ( (Just x ≡ x1 ) ∧ (Just y ≡ y1 ) ) )))) -- push->push->pop2 {l} {D} x y s = {!!} -- where -- t0 : (s3 : Stack {_} {succ l} {D} {Set l} (SingleLinkedStack D)) (x1 y1 : Maybe D) -> (stack s ≡ stack s3 ) -> (Just x ≡ x1 ) -> (Just y ≡ y1 ) -- -> ((stack s ≡ stack s3 ) ∧ ( (Just x ≡ x1 ) ∧ (Just y ≡ y1 ) )) -- t0 s3 x1 y1 refl refl refl = record { pi1 = refl ; pi2 = record { pi1 = refl ; pi2 = refl } } -- t1 : (s2 : Stack (SingleLinkedStack D)) -> pop2Stack s2 ( \s3 y1 x1 -> ((stack s ≡ stack s3 ) ∧ ( (Just x ≡ x1 ) ∧ (Just y ≡ y1 ) ) )) -- t1 s2 = {!!} -- t2 : (s1 : Stack (SingleLinkedStack D)) (x1 y1 : Maybe D) -> -- pushStack s1 y ( \s2 -> pop2Stack s2 ( \s3 y1 x1 -> ((stack s ≡ stack s3 ) ∧ ( (Just x ≡ x1 ) ∧ (Just y ≡ y1 ) ) ) )) -- t2 s1 = {!!} id : {n : Level} {A : Set n} -> A -> A id a = a -- push a, n times n-push : {n : Level} {A : Set n} {a : A} -> ℕ -> SingleLinkedStack A -> SingleLinkedStack A n-push zero s = s n-push {l} {A} {a} (suc n) s = pushSingleLinkedStack (n-push {l} {A} {a} n s) a (\s -> s ) n-pop : {n : Level}{A : Set n} {a : A} -> ℕ -> SingleLinkedStack A -> SingleLinkedStack A n-pop zero s = s n-pop {_} {A} {a} (suc n) s = popSingleLinkedStack (n-pop {_} {A} {a} n s) (\s _ -> s ) open ≡-Reasoning push-pop-equiv : {n : Level} {A : Set n} {a : A} (s : SingleLinkedStack A) -> (popSingleLinkedStack (pushSingleLinkedStack s a (\s -> s)) (\s _ -> s) ) ≡ s push-pop-equiv s = refl push-and-n-pop : {n : Level} {A : Set n} {a : A} (n : ℕ) (s : SingleLinkedStack A) -> n-pop {_} {A} {a} (suc n) (pushSingleLinkedStack s a id) ≡ n-pop {_} {A} {a} n s push-and-n-pop zero s = refl push-and-n-pop {_} {A} {a} (suc n) s = begin n-pop {_} {A} {a} (suc (suc n)) (pushSingleLinkedStack s a id) ≡⟨ refl ⟩ popSingleLinkedStack (n-pop {_} {A} {a} (suc n) (pushSingleLinkedStack s a id)) (\s _ -> s) ≡⟨ cong (\s -> popSingleLinkedStack s (\s _ -> s )) (push-and-n-pop n s) ⟩ popSingleLinkedStack (n-pop {_} {A} {a} n s) (\s _ -> s) ≡⟨ refl ⟩ n-pop {_} {A} {a} (suc n) s ∎ n-push-pop-equiv : {n : Level} {A : Set n} {a : A} (n : ℕ) (s : SingleLinkedStack A) -> (n-pop {_} {A} {a} n (n-push {_} {A} {a} n s)) ≡ s n-push-pop-equiv zero s = refl n-push-pop-equiv {_} {A} {a} (suc n) s = begin n-pop {_} {A} {a} (suc n) (n-push (suc n) s) ≡⟨ refl ⟩ n-pop {_} {A} {a} (suc n) (pushSingleLinkedStack (n-push n s) a (\s -> s)) ≡⟨ push-and-n-pop n (n-push n s) ⟩ n-pop {_} {A} {a} n (n-push n s) ≡⟨ n-push-pop-equiv n s ⟩ s ∎ n-push-pop-equiv-empty : {n : Level} {A : Set n} {a : A} -> (n : ℕ) -> n-pop {_} {A} {a} n (n-push {_} {A} {a} n emptySingleLinkedStack) ≡ emptySingleLinkedStack n-push-pop-equiv-empty n = n-push-pop-equiv n emptySingleLinkedStack