Mercurial > hg > GearsTemplate
view src/parallel_execution/RedBlackTree.agda @ 513:95865cab040a
fix RedBlackTree.agda
author | mir3636 |
---|---|
date | Thu, 04 Jan 2018 15:10:24 +0900 |
parents | 044c25475ed4 |
children | f2a3acc766b5 |
line wrap: on
line source
module RedBlackTree where open import stack open import Level record TreeMethods {n m : Level } {a : Set n } {t : Set m } (treeImpl : Set n ) : Set (m Level.⊔ n) where field putImpl : treeImpl -> a -> (treeImpl -> t) -> t getImpl : treeImpl -> (treeImpl -> Maybe a -> t) -> t open TreeMethods record Tree {n m : Level } {a : Set n } {t : Set m } (treeImpl : Set n ) : Set (m Level.⊔ n) where field tree : treeImpl treeMethods : TreeMethods {a} {t} putTree : a -> (Tree -> t) -> t putTree d next = putImpl (treeMethods ) tree d (\t1 -> next (record {tree = t1 ; treeMethods = treeMethods} )) getTree : (Tree -> Maybe a -> t) -> t getTree next = getImpl (treeMethods ) tree (\t1 d -> next (record {tree = t1 ; treeMethods = treeMethods} ) d ) open Tree data Color : Set where Red : Color Black : Color data CompareResult {n : Level } : Set n where LT : CompareResult GT : CompareResult EQ : CompareResult record Node (a k : Set) : Set where field key : k value : a right : Maybe (Node a) left : Maybe (Node a) color : Color open Node record RedBlackTree (a k si : Set) : Set where field root : Maybe (Node a k ) stack : Stack si compare : k -> k -> CompareResult open RedBlackTree open Stack insertCase3 : ? insertCase3 = ? -- tree datum parent grandparent next insertCase2 : {n m : Level } {t : Set m } {a : Set n} -> RedBlackTree ? ? -> a (Node a) (Node a) ? -> t insertCase2 tree datum parent grandparent next with (color parent) ... | Red = insertCase3 tree datum parent grandparent next ... | Black = next (record { root = ?; stack = createSingleLinkedStack }) insertCase1 : {n m : Level } {t : Set m } {a : Set n} -> RedBlackTree ? ? -> a (Maybe (Node a) ) (Node a) ? -> t insertCase1 tree datum Nothing grandparent next = next (record { root = ?; stack = createSingleLinkedStack }) insertCase1 tree datum (Just parent) grandparent next = insertCase2 tree datum parent grandparent next insertNode : ? insertNode tree datum next = get2Stack (stack tree) (\ s d1 d2 -> insertCase1 ( record { root = root tree; stack = s }) datum d1 d2 next) findNode1 : {Data t : Set} -> RedBlackTree Data -> Data -> Data -> (Code : RedBlackTree Data (RedBlackTree Data -> t) -> t) -> t findNode1 tree datum n next with (compare datum n) ... | EQ = popStack (tree stack) (\s d -> findNode3 d (record tree { root = just (record n {node = datum}); stack = s }) next) ... | GT = findNode2 tree datum (right n) next ... | LT = findNode2 tree datum (left n) next where findNode2 tree datum nothing next = insertNode tree datum next findNode2 tree datum (just n) next = findNode (record tree {root = just n}) datum n next findNode3 : ? findNode3 nothing tree next = next tree findNode3 (just n) tree next = popStack (tree stack) (\s d -> findNode3 d (record { root = record n {right = ? } })) findNode : {Data t : Set} -> RedBlackTree Data -> Data -> Node Data -> (Code : RedBlackTree Data (RedBlackTree Data -> t) -> t) -> t findNode tree datum n next = pushStack (stack tree) n (\ s -> findNode1 (record tree {stack = s }) datum n next) putRedBlackTree : {Data t : Set} -> RedBlackTree Data -> Data -> (Code : RedBlackTree Data -> t) -> t putRedBlackTree tree datum next with (root tree) ... | Nothing = insertNode tree datum next ... | Just n = findNode tree datum n (\ tree1 -> insertNode tree1 datum next) getRedBlackTree : {a t : Set} -> RedBlackTree a -> (Code : RedBlackTree a -> (Maybe a) -> t) -> t getRedBlackTree tree cs with (root tree) ... | Nothing = cs tree Nothing ... | Just d = cs stack1 (Just data1) where data1 = datum d stack1 = record { root = (next d) }