view src/test/main.cu @ 358:98c6e13d8ec7

add sort.cbc
author Nozomi Teruya <e125769@ie.u-ryukyu.ac.jp>
date Sat, 24 Jun 2017 20:07:27 +0900
parents 87128b876c63
children
line wrap: on
line source

/*
 * Copyright 1993-2015 NVIDIA Corporation.  All rights reserved.
 *
 * Please refer to the NVIDIA end user license agreement (EULA) associated
 * with this source code for terms and conditions that govern your use of
 * this software. Any use, reproduction, disclosure, or distribution of
 * this software and related documentation outside the terms of the EULA
 * is strictly prohibited.
 *
 */

/*
 * Quadro and Tesla GPUs with compute capability >= 2.0 can overlap two memcopies
 * with kernel execution. This sample illustrates the usage of CUDA streams to
 * achieve overlapping of kernel execution with copying data to and from the device.
 *
 * Additionally, this sample uses CUDA events to measure elapsed time for
 * CUDA calls.  Events are a part of CUDA API and provide a system independent
 * way to measure execution times on CUDA devices with approximately 0.5
 * microsecond precision.
 *
 * Elapsed times are averaged over nreps repetitions (10 by default).
 *
*/

const char *sSDKname = "simpleMultiCopy";

// includes, system
#include <stdio.h>

extern "C" {
extern void test1();
}
// include CUDA
#include <cuda.h>
#include <cuda_runtime.h>

// includes, project
//#include <helper_cuda.h>
//#include <helper_functions.h>  // helper for shared that are common to CUDA Samples

#include "helper_cuda.h"

// includes, kernels
// Declare the CUDA kernels here and main() code that is needed to launch
// Compute workload on the system
__global__ void incKernel(int *g_out, int *g_in, int N, int inner_reps)
{
    int idx = blockIdx.x * blockDim.x + threadIdx.x;

    if (idx < N)
    {
        for (int i=0; i<inner_reps; ++i)
        {
            g_out[idx] = g_in[idx] + 1;
        }
    }
}

#define STREAM_COUNT 4

// Uncomment to simulate data source/sink IO times
//#define SIMULATE_IO

int *h_data_source;
int *h_data_sink;

int *h_data_in[STREAM_COUNT];
int *d_data_in[STREAM_COUNT];

int *h_data_out[STREAM_COUNT];
int *d_data_out[STREAM_COUNT];


cudaEvent_t cycleDone[STREAM_COUNT];
cudaStream_t stream[STREAM_COUNT];

cudaEvent_t start, stop;

int N = 1 << 22;
int nreps = 10;                 // number of times each experiment is repeated
int inner_reps = 5;

int memsize;

dim3 block(512);
dim3 grid;

int thread_blocks;

float processWithStreams(int streams_used);
void init();
bool test();

////////////////////////////////////////////////////////////////////////////////
// Program main
////////////////////////////////////////////////////////////////////////////////
int main(int argc, char *argv[])
{
    int cuda_device = 0;
    float scale_factor;
    cudaDeviceProp deviceProp;

    test1();
    printf("[%s] - Starting...\n", sSDKname);

        // Otherwise pick the device with the highest Gflops/s
        cuda_device = 0;
        checkCudaErrors(cudaSetDevice(cuda_device));
        checkCudaErrors(cudaGetDeviceProperties(&deviceProp, cuda_device));
        printf("> Using CUDA device [%d]: %s\n", cuda_device, deviceProp.name);

    checkCudaErrors(cudaGetDeviceProperties(&deviceProp, cuda_device));
    printf("[%s] has %d MP(s) x %d (Cores/MP) = %d (Cores)\n",
           deviceProp.name, deviceProp.multiProcessorCount,
           _ConvertSMVer2Cores(deviceProp.major, deviceProp.minor),
           _ConvertSMVer2Cores(deviceProp.major, deviceProp.minor) * deviceProp.multiProcessorCount);

    // Anything that is less than 32 Cores will have scaled down workload
    scale_factor = max((32.0f / (_ConvertSMVer2Cores(deviceProp.major, deviceProp.minor) * (float)deviceProp.multiProcessorCount)), 1.0f);
    N = (int)((float)N / scale_factor);

    printf("> Device name: %s\n", deviceProp.name);
    printf("> CUDA Capability %d.%d hardware with %d multi-processors\n",
           deviceProp.major, deviceProp.minor,
           deviceProp.multiProcessorCount);
    printf("> scale_factor = %.2f\n", 1.0f/scale_factor);
    printf("> array_size   = %d\n\n", N);

    memsize = N * sizeof(int);

    thread_blocks = N / block.x;

    grid.x = thread_blocks % 65535;
    grid.y = (thread_blocks / 65535 + 1);


    // Allocate resources

    h_data_source = (int *) malloc(memsize);
    h_data_sink = (int *) malloc(memsize);

    for (int i =0; i<STREAM_COUNT; ++i)
    {

        checkCudaErrors(cudaHostAlloc(&h_data_in[i], memsize,
                                      cudaHostAllocDefault));
        checkCudaErrors(cudaMalloc(&d_data_in[i], memsize));

        checkCudaErrors(cudaHostAlloc(&h_data_out[i], memsize,
                                      cudaHostAllocDefault));
        checkCudaErrors(cudaMalloc(&d_data_out[i], memsize));

        checkCudaErrors(cudaStreamCreate(&stream[i]));
        checkCudaErrors(cudaEventCreate(&cycleDone[i]));

        cudaEventRecord(cycleDone[i], stream[i]);
    }

    cudaEventCreate(&start);
    cudaEventCreate(&stop);

    init();

    // Kernel warmup
    incKernel<<<grid, block>>>(d_data_out[0], d_data_in[0], N, inner_reps);


    // Time copies and kernel
    cudaEventRecord(start,0);
    checkCudaErrors(cudaMemcpyAsync(d_data_in[0], h_data_in[0], memsize,
                                    cudaMemcpyHostToDevice,0));
    cudaEventRecord(stop,0);
    cudaEventSynchronize(stop);

    float memcpy_h2d_time;
    cudaEventElapsedTime(&memcpy_h2d_time, start, stop);

    cudaEventRecord(start,0);
    checkCudaErrors(cudaMemcpyAsync(h_data_out[0], d_data_out[0], memsize,
                                    cudaMemcpyDeviceToHost, 0));
    cudaEventRecord(stop,0);
    cudaEventSynchronize(stop);

    float memcpy_d2h_time;
    cudaEventElapsedTime(&memcpy_d2h_time, start, stop);

    cudaEventRecord(start,0);
    incKernel<<<grid, block,0,0>>>(d_data_out[0], d_data_in[0], N, inner_reps);
    cudaEventRecord(stop,0);
    cudaEventSynchronize(stop);

    float kernel_time;
    cudaEventElapsedTime(&kernel_time, start, stop);

    printf("\n");
    printf("Relevant properties of this CUDA device\n");
    printf("(%s) Can overlap one CPU<>GPU data transfer with GPU kernel execution (device property \"deviceOverlap\")\n", deviceProp.deviceOverlap ? "X" : " ");
    //printf("(%s) Can execute several GPU kernels simultaneously (compute capability >= 2.0)\n", deviceProp.major >= 2 ? "X": " ");
    printf("(%s) Can overlap two CPU<>GPU data transfers with GPU kernel execution\n"
           "    (Compute Capability >= 2.0 AND (Tesla product OR Quadro 4000/5000/6000/K5000)\n",
           (deviceProp.major >= 2 && deviceProp.asyncEngineCount > 1)
           ? "X" : " ");

    printf("\n");
    printf("Measured timings (throughput):\n");
    printf(" Memcpy host to device\t: %f ms (%f GB/s)\n",
           memcpy_h2d_time, (memsize * 1e-6)/ memcpy_h2d_time);
    printf(" Memcpy device to host\t: %f ms (%f GB/s)\n",
           memcpy_d2h_time, (memsize * 1e-6)/ memcpy_d2h_time);
    printf(" Kernel\t\t\t: %f ms (%f GB/s)\n",
           kernel_time, (inner_reps *memsize * 2e-6)/ kernel_time);

    printf("\n");
    printf("Theoretical limits for speedup gained from overlapped data transfers:\n");
    printf("No overlap at all (transfer-kernel-transfer): %f ms \n",
           memcpy_h2d_time + memcpy_d2h_time + kernel_time);
    printf("Compute can overlap with one transfer: %f ms\n",
           max((memcpy_h2d_time + memcpy_d2h_time), kernel_time));
    printf("Compute can overlap with both data transfers: %f ms\n",
           max(max(memcpy_h2d_time,memcpy_d2h_time), kernel_time));

    // Process pipelined work
    float serial_time = processWithStreams(1);
    float overlap_time = processWithStreams(STREAM_COUNT);

    printf("\nAverage measured timings over %d repetitions:\n", nreps);
    printf(" Avg. time when execution fully serialized\t: %f ms\n",
           serial_time / nreps);
    printf(" Avg. time when overlapped using %d streams\t: %f ms\n",
           STREAM_COUNT, overlap_time / nreps);
    printf(" Avg. speedup gained (serialized - overlapped)\t: %f ms\n",
           (serial_time - overlap_time) / nreps);

    printf("\nMeasured throughput:\n");
    printf(" Fully serialized execution\t\t: %f GB/s\n",
           (nreps * (memsize * 2e-6))/ serial_time);
    printf(" Overlapped using %d streams\t\t: %f GB/s\n",
           STREAM_COUNT, (nreps * (memsize * 2e-6))/ overlap_time);

    // Verify the results, we will use the results for final output
    bool bResults = test();

    // Free resources

    free(h_data_source);
    free(h_data_sink);

    for (int i =0; i<STREAM_COUNT; ++i)
    {

        cudaFreeHost(h_data_in[i]);
        cudaFree(d_data_in[i]);

        cudaFreeHost(h_data_out[i]);
        cudaFree(d_data_out[i]);

        cudaStreamDestroy(stream[i]);
        cudaEventDestroy(cycleDone[i]);
    }

    cudaEventDestroy(start);
    cudaEventDestroy(stop);

    // Test result
    exit(bResults ? EXIT_SUCCESS : EXIT_FAILURE);
}

float processWithStreams(int streams_used)
{

    int current_stream = 0;

    float time;

    // Do processing in a loop
    //
    // Note: All memory commands are processed in the order  they are issued,
    // independent of the stream they are enqueued in. Hence the pattern by
    // which the copy and kernel commands are enqueued in the stream
    // has an influence on the achieved overlap.

    cudaEventRecord(start, 0);

    for (int i=0; i<nreps; ++i)
    {
        int next_stream = (current_stream + 1) % streams_used;

#ifdef SIMULATE_IO
        // Store the result
        memcpy(h_data_sink, h_data_out[current_stream],memsize);

        // Read new input
        memcpy(h_data_in[next_stream], h_data_source, memsize);
#endif

        // Ensure that processing and copying of the last cycle has finished
        cudaEventSynchronize(cycleDone[next_stream]);

        // Process current frame
        incKernel<<<grid, block, 0, stream[current_stream]>>>(
            d_data_out[current_stream],
            d_data_in[current_stream],
            N,
            inner_reps);

        // Upload next frame
        checkCudaErrors(cudaMemcpyAsync(
                            d_data_in[next_stream],
                            h_data_in[next_stream],
                            memsize,
                            cudaMemcpyHostToDevice,
                            stream[next_stream]));

        // Download current frame
        checkCudaErrors(cudaMemcpyAsync(
                            h_data_out[current_stream],
                            d_data_out[current_stream],
                            memsize,
                            cudaMemcpyDeviceToHost,
                            stream[current_stream]));

        checkCudaErrors(cudaEventRecord(
                            cycleDone[current_stream],
                            stream[current_stream]));

        current_stream = next_stream;
    }

    cudaEventRecord(stop, 0);

    cudaDeviceSynchronize();

    cudaEventElapsedTime(&time, start, stop);

    return time;

}

void init()
{
    for (int i=0; i<N; ++i)
    {
        h_data_source[i] = 0;
    }

    for (int i =0; i<STREAM_COUNT; ++i)
    {
        memcpy(h_data_in[i], h_data_source, memsize);
    }
}


bool test()
{

    bool passed = true;

    for (int j =0; j<STREAM_COUNT; ++j)
    {
        for (int i =0; i<N; ++i)
        {
            passed &= (h_data_out[j][i] == 1);
        }
    }

    return passed;
}