Mercurial > hg > GearsTemplate
view src/parallel_execution/stack.agda @ 485:a7548f01f013
proof pop2 function in agda
author | ryokka |
---|---|
date | Fri, 29 Dec 2017 19:27:39 +0900 |
parents | 8a22cfd174bf |
children | 8e133a3938c0 |
line wrap: on
line source
module stack where open import Relation.Binary.PropositionalEquality open import Relation.Binary.Core open import Data.Nat open import Level renaming (suc to succ ; zero to Zero) ex : 1 + 2 ≡ 3 ex = refl data Bool : Set where True : Bool False : Bool record _∧_ {a b : Set} : Set where field pi1 : a pi2 : b data Maybe (a : Set) : Set where Nothing : Maybe a Just : a -> Maybe a record Stack {a t : Set} (stackImpl : Set) : Set where field stack : stackImpl push : stackImpl -> a -> (stackImpl -> t) -> t pop : stackImpl -> (stackImpl -> Maybe a -> t) -> t pop2 : stackImpl -> (stackImpl -> Maybe a -> Maybe a -> t) -> t get : stackImpl -> (stackImpl -> Maybe a -> t) -> t get2 : stackImpl -> (stackImpl -> Maybe a -> Maybe a -> t) -> t open Stack pushStack : {a t si : Set} -> Stack si -> a -> (Stack si -> t) -> t pushStack {a} {t} s0 d next = push s0 (stack s0) d (\s1 -> next (record s0 {stack = s1} )) popStack : {a t si : Set} -> Stack si -> (Stack si -> Maybe a -> t) -> t popStack {a} {t} s0 next = pop s0 (stack s0) (\s1 d1 -> next (record s0 {stack = s1}) d1 ) pop2Stack : {a t si : Set} -> Stack si -> (Stack si -> Maybe a -> Maybe a -> t) -> t pop2Stack {a} {t} s0 next = pop2 s0 (stack s0) (\s1 d1 d2 -> next (record s0 {stack = s1}) d1 d2) getStack : {a t si : Set} -> Stack si -> (Stack si -> Maybe a -> t) -> t getStack {a} {t} s0 next = get s0 (stack s0) (\s1 d1 -> next (record s0 {stack = s1}) d1 ) get2Stack : {a t si : Set} -> Stack si -> (Stack si -> Maybe a -> Maybe a -> t) -> t get2Stack {a} {t} s0 next = get2 s0 (stack s0) (\s1 d1 d2 -> next (record s0 {stack = s1}) d1 d2) data Element (a : Set) : Set where cons : a -> Maybe (Element a) -> Element a datum : {a : Set} -> Element a -> a datum (cons a _) = a next : {a : Set} -> Element a -> Maybe (Element a) next (cons _ n) = n {- -- cannot define recrusive record definition. so use linked list with maybe. record Element {l : Level} (a : Set l) : Set (suc l) where field datum : a -- `data` is reserved by Agda. next : Maybe (Element a) -} record SingleLinkedStack (a : Set) : Set where field top : Maybe (Element a) open SingleLinkedStack pushSingleLinkedStack : {Data t : Set} -> SingleLinkedStack Data -> Data -> (Code : SingleLinkedStack Data -> t) -> t pushSingleLinkedStack stack datum next = next stack1 where element = cons datum (top stack) stack1 = record {top = Just element} popSingleLinkedStack : {a t : Set} -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> t) -> t popSingleLinkedStack stack cs with (top stack) ... | Nothing = cs stack Nothing ... | Just d = cs stack1 (Just data1) where data1 = datum d stack1 = record { top = (next d) } pop2SingleLinkedStack : {a t : Set} -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> (Maybe a) -> t) -> t pop2SingleLinkedStack {a} stack cs with (top stack) ... | Nothing = cs stack Nothing Nothing ... | Just d = pop2SingleLinkedStack' stack cs where pop2SingleLinkedStack' : {t : Set} -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> (Maybe a) -> t) -> t pop2SingleLinkedStack' stack cs with (next d) ... | Nothing = cs stack Nothing Nothing ... | Just d1 = cs (record {top = (next d)}) (Just (datum d)) (Just (datum d1)) getSingleLinkedStack : {a t : Set} -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> t) -> t getSingleLinkedStack stack cs with (top stack) ... | Nothing = cs stack Nothing ... | Just d = cs stack (Just data1) where data1 = datum d get2SingleLinkedStack : {a t : Set} -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> (Maybe a) -> t) -> t get2SingleLinkedStack {a} stack cs with (top stack) ... | Nothing = cs stack Nothing Nothing ... | Just d = get2SingleLinkedStack' stack cs where get2SingleLinkedStack' : {t : Set} -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> (Maybe a) -> t) -> t get2SingleLinkedStack' stack cs with (next d) ... | Nothing = cs stack Nothing Nothing ... | Just d1 = cs stack (Just (datum d)) (Just (datum d1)) emptySingleLinkedStack : {a : Set} -> SingleLinkedStack a emptySingleLinkedStack = record {top = Nothing} createSingleLinkedStack : {a b : Set} -> Stack {a} {b} (SingleLinkedStack a) createSingleLinkedStack = record { stack = emptySingleLinkedStack ; push = pushSingleLinkedStack ; pop = popSingleLinkedStack ; pop2 = pop2SingleLinkedStack ; get = getSingleLinkedStack ; get2 = get2SingleLinkedStack } test01 : {a : Set} -> SingleLinkedStack a -> Maybe a -> Bool test01 stack _ with (top stack) ... | (Just _) = True ... | Nothing = False test02 : {a : Set} -> SingleLinkedStack a -> Bool test02 stack = (popSingleLinkedStack stack) test01 test03 : {a : Set} -> a -> Bool test03 v = pushSingleLinkedStack emptySingleLinkedStack v test02 testStack01 : {a : Set} -> a -> Bool testStack01 v = pushStack createSingleLinkedStack v ( \s -> popStack s (\s1 d1 -> True)) testStack02 : (Stack (SingleLinkedStack ℕ) -> Bool) -> Bool testStack02 cs = pushStack createSingleLinkedStack 1 ( \s -> pushStack s 2 cs) testStack031 : (d1 d2 : ℕ ) -> Bool testStack031 1 2 = True testStack031 _ _ = False testStack032 : (d1 d2 : Maybe ℕ) -> Bool testStack032 (Just d1) (Just d2) = testStack031 d1 d2 testStack032 _ _ = False testStack03 : Stack (SingleLinkedStack ℕ) -> ((Maybe ℕ) -> (Maybe ℕ) -> Bool ) -> Bool testStack03 s cs = pop2Stack s ( \s d1 d2 -> cs d1 d2 ) testStack04 : Bool testStack04 = testStack02 (\s -> testStack03 s testStack032) testStack05 : Set testStack05 = testStack04 ≡ True lemma : {A : Set} {a : A} -> test03 a ≡ False lemma = refl id : {A : Set} -> A -> A id a = a n-push : {A : Set} {a : A} -> ℕ -> SingleLinkedStack A -> SingleLinkedStack A n-push zero s = s n-push {A} {a} (suc n) s = pushSingleLinkedStack (n-push {A} {a} n s) a (\s -> s) n-pop : {A : Set} {a : A} -> ℕ -> SingleLinkedStack A -> SingleLinkedStack A n-pop zero s = s n-pop {A} {a} (suc n) s = popSingleLinkedStack (n-pop {A} {a} n s) (\s _ -> s) open ≡-Reasoning push-pop-equiv : {A : Set} {a : A} (s : SingleLinkedStack A) -> popSingleLinkedStack (pushSingleLinkedStack s a (\s -> s)) (\s _ -> s) ≡ s push-pop-equiv s = refl push-and-n-pop : {A : Set} {a : A} (n : ℕ) (s : SingleLinkedStack A) -> n-pop {A} {a} (suc n) (pushSingleLinkedStack s a id) ≡ n-pop {A} {a} n s push-and-n-pop zero s = refl push-and-n-pop {A} {a} (suc n) s = begin n-pop {A} {a} (suc (suc n)) (pushSingleLinkedStack s a id) ≡⟨ refl ⟩ popSingleLinkedStack (n-pop {A} {a} (suc n) (pushSingleLinkedStack s a id)) (\s _ -> s) ≡⟨ cong (\s -> popSingleLinkedStack s (\s _ -> s)) (push-and-n-pop n s) ⟩ popSingleLinkedStack (n-pop {A} {a} n s) (\s _ -> s) ≡⟨ refl ⟩ n-pop {A} {a} (suc n) s ∎ n-push-pop-equiv : {A : Set} {a : A} (n : ℕ) (s : SingleLinkedStack A) -> (n-pop {A} {a} n (n-push {A} {a} n s)) ≡ s n-push-pop-equiv zero s = refl n-push-pop-equiv {A} {a} (suc n) s = begin n-pop {A} {a} (suc n) (n-push (suc n) s) ≡⟨ refl ⟩ n-pop {A} {a} (suc n) (pushSingleLinkedStack (n-push n s) a (\s -> s)) ≡⟨ push-and-n-pop n (n-push n s) ⟩ n-pop {A} {a} n (n-push n s) ≡⟨ n-push-pop-equiv n s ⟩ s ∎ n-push-pop-equiv-empty : {A : Set} {a : A} -> (n : ℕ) -> n-pop {A} {a} n (n-push {A} {a} n emptySingleLinkedStack) ≡ emptySingleLinkedStack n-push-pop-equiv-empty n = n-push-pop-equiv n emptySingleLinkedStack