Mercurial > hg > GearsTemplate
view src/parallel_execution/stack.agda @ 161:db647f7ed2f6
Prove simple lemma in stack.agda
author | atton |
---|---|
date | Thu, 17 Nov 2016 18:23:56 +0000 |
parents | 3fdb3334c7a9 |
children | b0c6e0392b00 |
line wrap: on
line source
module stack where open import Relation.Binary.PropositionalEquality data Bool : Set where True : Bool False : Bool data Maybe (a : Set) : Set where Nothing : Maybe a Just : a -> Maybe a record Stack {a t : Set} (stackImpl : Set) : Set where field stack : stackImpl push : stackImpl -> a -> (stackImpl -> t) -> t pop : stackImpl -> (stackImpl -> Maybe a -> t) -> t data Element (a : Set) : Set where cons : a -> Maybe (Element a) -> Element a datum : {a : Set} -> Element a -> a datum (cons a _) = a next : {a : Set} -> Element a -> Maybe (Element a) next (cons _ n) = n {- record Element {l : Level} (a : Set l) : Set (suc l) where field datum : a next : Maybe (Element a) -} record SingleLinkedStack (a : Set) : Set where field top : Maybe (Element a) open SingleLinkedStack pushSingleLinkedStack : {Data t : Set} -> SingleLinkedStack Data -> Data -> (Code : SingleLinkedStack Data -> t) -> t pushSingleLinkedStack stack datum next = next stack1 where element = cons datum (top stack) -- element = record {next = top stack; datum = datum} stack1 = record {top = Just element} popSingleLinkedStack : {a t : Set} -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> t) -> t popSingleLinkedStack stack cs with (top stack) ... | Nothing = cs stack Nothing ... | Just d = cs stack1 (Just data1) where data1 = datum d stack1 = record { top = (next d) } emptySingleLinkedStack : {a : Set} -> SingleLinkedStack a emptySingleLinkedStack = record {top = Nothing} createSingleLinkedStack : {a b : Set} -> Stack {a} {b} (SingleLinkedStack a) createSingleLinkedStack = record { stack = emptySingleLinkedStack ; push = pushSingleLinkedStack ; pop = popSingleLinkedStack } test01 : {a : Set} -> SingleLinkedStack a -> Maybe a -> Bool test01 stack _ with (top stack) ... | (Just _) = True ... | Nothing = False test02 : {a : Set} -> SingleLinkedStack a -> Bool test02 stack = (popSingleLinkedStack stack) test01 test03 : Bool test03 = pushSingleLinkedStack emptySingleLinkedStack (cons True Nothing) test02 --test03 = pushSingleLinkedStack emptySingleLinkedStack (False) test02 lemma : test03 ≡ False lemma = refl