Mercurial > hg > GearsTemplate
view src/parallel_execution/RedBlackTree.agda @ 542:e3cd5e3a01b8
add stack implement
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 05 Jan 2018 09:31:04 +0900 |
parents | b118ed3ba583 |
children | f63a9a081b61 |
line wrap: on
line source
module RedBlackTree where open import stack open import Level record TreeMethods {n m : Level } {a : Set n } {t : Set m } (treeImpl : Set n ) : Set (m Level.⊔ n) where field putImpl : treeImpl -> a -> (treeImpl -> t) -> t getImpl : treeImpl -> (treeImpl -> Maybe a -> t) -> t open TreeMethods record Tree {n m : Level } {a : Set n } {t : Set m } (treeImpl : Set n ) : Set (m Level.⊔ n) where field tree : treeImpl treeMethods : TreeMethods {n} {m} {a} {t} treeImpl putTree : a -> (Tree treeImpl -> t) -> t putTree d next = putImpl (treeMethods ) tree d (\t1 -> next (record {tree = t1 ; treeMethods = treeMethods} )) getTree : (Tree treeImpl -> Maybe a -> t) -> t getTree next = getImpl (treeMethods ) tree (\t1 d -> next (record {tree = t1 ; treeMethods = treeMethods} ) d ) open Tree data Color {n : Level } : Set n where Red : Color Black : Color data CompareResult {n : Level } : Set n where LT : CompareResult GT : CompareResult EQ : CompareResult record Node {n : Level } (a k : Set n) : Set n where inductive field key : k value : a right : Maybe (Node a k) left : Maybe (Node a k) color : Color {n} open Node Stak : {n m : Level } (a k : Set n) (t : Set m ) -> Set (m ⊔ n) Stak {n} {m} a k t = Stack {n} {m} (Node a k) {t} (SingleLinkedStack (Node a k)) open Stack record RedBlackTree {n m : Level } {t : Set m} (a k : Set n) : Set (m Level.⊔ n) where field root : Maybe (Node a k) nodeStack : Stak a k t compare : k -> k -> CompareResult {n} open RedBlackTree -- -- put new node at parent node, and rebuild tree to the top -- {-# TERMINATING #-} -- https://agda.readthedocs.io/en/v2.5.3/language/termination-checking.html replaceNode : {n m : Level } {t : Set m } {a k : Set n} -> RedBlackTree {n} {m} {t} a k -> Stak a k t -> Node a k -> Node a k -> (RedBlackTree {n} {m} {t} a k -> t) -> t replaceNode {n} {m} {t} {a} {k} tree s parent n0 next = popStack s ( \s grandParent -> replaceNode1 s grandParent ( compare tree (key parent) (key n0) ) ) where replaceNode1 : Stak a k t -> Maybe ( Node a k ) -> CompareResult -> t replaceNode1 s Nothing LT = next ( record tree { root = Just ( record parent { left = Just n0 ; color = Black } ) } ) replaceNode1 s Nothing GT = next ( record tree { root = Just ( record parent { right = Just n0 ; color = Black } ) } ) replaceNode1 s Nothing EQ = next ( record tree { root = Just ( record parent { right = Just n0 ; color = Black } ) } ) replaceNode1 s (Just grandParent) result with result ... | LT = replaceNode tree s grandParent ( record parent { left = Just n0 } ) next ... | GT = replaceNode tree s grandParent ( record parent { right = Just n0 } ) next ... | EQ = next tree rotateRight : {n m : Level } {t : Set m } {a k : Set n} -> RedBlackTree {n} {m} {t} a k -> Stak a k t -> Node a k -> Node a k -> Node a k -> (RedBlackTree {n} {m} {t} a k -> t) -> t rotateRight {n} {m} {t} {a} {k} tree s n0 parent grandParent next = {!!} rotateLeft : {n m : Level } {t : Set m } {a k : Set n} -> RedBlackTree {n} {m} {t} a k -> Stak a k t -> Node a k -> Node a k -> Node a k -> (RedBlackTree {n} {m} {t} a k -> t) -> t rotateLeft {n} {m} {t} {a} {k} tree s n0 parent grandParent next = {!!} insertCase5 : {n m : Level } {t : Set m } {a k : Set n} -> RedBlackTree {n} {m} {t} a k -> Stak a k t -> Node a k -> Node a k -> Node a k -> (RedBlackTree {n} {m} {t} a k -> t) -> t insertCase5 {n} {m} {t} {a} {k} tree s n0 parent grandParent next = {!!} insertCase4 : {n m : Level } {t : Set m } {a k : Set n} -> RedBlackTree {n} {m} {t} a k -> Stak a k t -> Node a k -> Node a k -> Node a k -> (RedBlackTree {n} {m} {t} a k -> t) -> t insertCase4 {n} {m} {t} {a} {k} tree s n0 parent grandParent next = {!!} {-# TERMINATING #-} insertNode : {n m : Level } {t : Set m } {a k : Set n} -> RedBlackTree {n} {m} {t} a k -> Stak a k t -> Node a k -> (RedBlackTree {n} {m} {t} a k -> t) -> t insertNode {n} {m} {t} {a} {k} tree s n0 next = get2Stack s (\ s d1 d2 -> insertCase1 s n0 d1 d2 ) where insertCase1 : Stack (Node a k) (SingleLinkedStack (Node a k)) -> Node a k -> Maybe (Node a k) -> Maybe (Node a k) -> t -- placed here to allow mutual recursion -- http://agda.readthedocs.io/en/v2.5.2/language/mutual-recursion.html insertCase3 : Stak a k t -> Node a k -> Node a k -> Node a k -> t insertCase3 s n0 parent grandParent with left grandParent | right grandParent ... | Nothing | Nothing = insertCase4 tree s n0 parent grandParent next ... | Nothing | Just uncle = insertCase4 tree s n0 parent grandParent next ... | Just uncle | _ with compare tree ( key uncle ) ( key parent ) ... | EQ = insertCase4 tree s n0 parent grandParent next ... | _ with color uncle ... | Red = pop2Stack s ( \s p0 p1 -> insertCase1 s ( record grandParent { color = Red ; left = Just ( record parent { color = Black ; left = Just n0 } ) ; right = Just ( record uncle { color = Black } ) }) p0 p1 ) ... | Black = insertCase4 tree s n0 parent grandParent next insertCase2 : Stak a k t -> Node a k -> Node a k -> Node a k -> t insertCase2 s n0 parent grandParent with color parent ... | Black = replaceNode tree s grandParent n0 next ... | Red = insertCase3 s n0 parent grandParent insertCase1 s n0 Nothing Nothing = next tree insertCase1 s n0 Nothing (Just grandParent) = replaceNode tree s grandParent n0 next insertCase1 s n0 (Just grandParent) Nothing = replaceNode tree s grandParent n0 next insertCase1 s n0 (Just parent) (Just grandParent) = insertCase2 s n0 parent grandParent where findNode : {n m : Level } {a k : Set n} {t : Set m} -> RedBlackTree {n} {m} {t} a k -> Stak a k t -> (Node a k) -> (Node a k) -> (RedBlackTree {n} {m} {t} a k -> Stak a k t -> Node a k -> t) -> t findNode {n} {m} {a} {k} {t} tree s n0 n1 next = pushStack s n1 (\ s -> findNode1 s n1) where findNode2 : Stak a k t -> (Maybe (Node a k)) -> t findNode2 s Nothing = next tree s n0 findNode2 s (Just n) = findNode tree s n0 n next findNode1 : Stak a k t -> (Node a k) -> t findNode1 s n1 with (compare tree (key n0) (key n1)) ... | EQ = next tree s n0 ... | GT = findNode2 s (right n1) ... | LT = findNode2 s (left n1) leafNode : {n : Level } {a k : Set n} -> k -> a -> Node a k leafNode k1 value = record { key = k1 ; value = value ; right = Nothing ; left = Nothing ; color = Black } putRedBlackTree : {n m : Level } {a k : Set n} {t : Set m} -> RedBlackTree a k -> k -> a -> (RedBlackTree a k -> t) -> t putRedBlackTree {n} {m} {a} {k} {t} tree k1 value next with (root tree) ... | Nothing = next (record tree {root = Just (leafNode k1 value) }) ... | Just n2 = findNode tree (nodeStack tree) (leafNode k1 value) n2 (\ tree1 s n1 -> insertNode tree1 s n1 next) getRedBlackTree : {n m : Level } {a k : Set n} {t : Set m} -> RedBlackTree {n} {m} {t} a k -> k -> (RedBlackTree a k -> (Maybe (Node a k)) -> t) -> t getRedBlackTree {_} {_} {a} {k} {t} tree k1 cs = checkNode (root tree) where checkNode : Maybe (Node a k) -> t checkNode Nothing = cs tree Nothing checkNode (Just n) = search n where search : Node a k -> t search n with compare tree k1 (key n) search n | LT = checkNode (left n) search n | GT = checkNode (right n) search n | EQ = cs tree (Just n)