Mercurial > hg > GearsTemplate
changeset 484:8a22cfd174bf
pop2 and get2 in agda
author | ryokka |
---|---|
date | Fri, 29 Dec 2017 18:29:01 +0900 |
parents | 9098ec0a9e6b |
children | a7548f01f013 747dd4ba7b44 |
files | src/parallel_execution/stack.agda |
diffstat | 1 files changed, 52 insertions(+), 21 deletions(-) [+] |
line wrap: on
line diff
--- a/src/parallel_execution/stack.agda Fri Dec 29 11:07:18 2017 +0900 +++ b/src/parallel_execution/stack.agda Fri Dec 29 18:29:01 2017 +0900 @@ -2,11 +2,11 @@ open import Relation.Binary.PropositionalEquality open import Relation.Binary.Core - +open import Data.Nat +open import Level renaming (suc to succ ; zero to Zero) -data Nat : Set where - zero : Nat - suc : Nat -> Nat +ex : 1 + 2 ≡ 3 +ex = refl data Bool : Set where True : Bool @@ -26,8 +26,9 @@ stack : stackImpl push : stackImpl -> a -> (stackImpl -> t) -> t pop : stackImpl -> (stackImpl -> Maybe a -> t) -> t + pop2 : stackImpl -> (stackImpl -> Maybe a -> Maybe a -> t) -> t get : stackImpl -> (stackImpl -> Maybe a -> t) -> t - -- get2 : stackImpl -> (stackImpl -> (Maybe a -> Maybe a) -> t) -> t + get2 : stackImpl -> (stackImpl -> Maybe a -> Maybe a -> t) -> t open Stack pushStack : {a t si : Set} -> Stack si -> a -> (Stack si -> t) -> t @@ -36,8 +37,14 @@ popStack : {a t si : Set} -> Stack si -> (Stack si -> Maybe a -> t) -> t popStack {a} {t} s0 next = pop s0 (stack s0) (\s1 d1 -> next (record s0 {stack = s1}) d1 ) --- get : {a t si : Set} -> Stack si -> (Stack si -> t) -> t --- get {a} {t} s0 next = pop s0 (stack s0) (\s1 -> next (record s0 {})) +pop2Stack : {a t si : Set} -> Stack si -> (Stack si -> Maybe a -> Maybe a -> t) -> t +pop2Stack {a} {t} s0 next = pop2 s0 (stack s0) (\s1 d1 d2 -> next (record s0 {stack = s1}) d1 d2) + +getStack : {a t si : Set} -> Stack si -> (Stack si -> Maybe a -> t) -> t +getStack {a} {t} s0 next = get s0 (stack s0) (\s1 d1 -> next (record s0 {stack = s1}) d1 ) + +get2Stack : {a t si : Set} -> Stack si -> (Stack si -> Maybe a -> Maybe a -> t) -> t +get2Stack {a} {t} s0 next = get2 s0 (stack s0) (\s1 d1 d2 -> next (record s0 {stack = s1}) d1 d2) data Element (a : Set) : Set where @@ -80,6 +87,17 @@ data1 = datum d stack1 = record { top = (next d) } +pop2SingleLinkedStack : {a t : Set} -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> (Maybe a) -> t) -> t +pop2SingleLinkedStack {a} stack cs with (top stack) +... | Nothing = cs stack Nothing Nothing +... | Just d = pop2SingleLinkedStack' stack cs + where + pop2SingleLinkedStack' : {t : Set} -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> (Maybe a) -> t) -> t + pop2SingleLinkedStack' stack cs with (next d) + ... | Nothing = cs stack Nothing Nothing + ... | Just d1 = cs (record {top = (next d)}) (Just (datum d)) (Just (datum d1)) + + getSingleLinkedStack : {a t : Set} -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> t) -> t getSingleLinkedStack stack cs with (top stack) ... | Nothing = cs stack Nothing @@ -88,17 +106,15 @@ data1 = datum d get2SingleLinkedStack : {a t : Set} -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> (Maybe a) -> t) -> t -get2SingleLinkedStack stack cs with (top stack) +get2SingleLinkedStack {a} stack cs with (top stack) ... | Nothing = cs stack Nothing Nothing -... | Just d = (getSingleLinkedStack2' stack cs) Nothing +... | Just d = get2SingleLinkedStack' stack cs where - getSingleLinkedStack2' : {a t : Set} -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> t) -> t - getSingleLinkedStack2' stack cs with (next d) - ... | Nothing = cs stack Nothing - ... | Just d1 = cs stack (Just data1 data2) - where - data1 = datum d - data2 = datum d1 + get2SingleLinkedStack' : {t : Set} -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> (Maybe a) -> t) -> t + get2SingleLinkedStack' stack cs with (next d) + ... | Nothing = cs stack Nothing Nothing + ... | Just d1 = cs stack (Just (datum d)) (Just (datum d1)) + -- get2SingleLinkedStack : {a t : Set} -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> (Maybe a) -> t) -> t @@ -122,7 +138,9 @@ createSingleLinkedStack = record { stack = emptySingleLinkedStack ; push = pushSingleLinkedStack ; pop = popSingleLinkedStack + ; pop2 = pop2SingleLinkedStack ; get = getSingleLinkedStack + ; get2 = get2SingleLinkedStack } @@ -142,7 +160,20 @@ testStack01 v = pushStack createSingleLinkedStack v ( \s -> popStack s (\s1 d1 -> True)) +testStack02 : {t : Set} -> (Stack (SingleLinkedStack ℕ) -> t) -> t +testStack02 cs = pushStack createSingleLinkedStack 1 ( + \s -> pushStack s 2 cs) +testStack031 : {d1 d2 : ℕ } -> d1 ≡ 1 -> d2 ≡ 2 -> Bool +testStack031 refl refl = True + +testStack032 : (d1 d2 : Maybe ℕ) -> {!!} +testStack032 (Just d1) (Just d2) = testStack031 {d1} {d2} {!!} {!!} +testStack032 _ _ = False + +testStack03 : {t : Set} -> Stack (SingleLinkedStack ℕ) -> {!!} +testStack03 s = pop2Stack s ( + \s d1 d2 -> testStack032 d1 d2 ) lemma : {A : Set} {a : A} -> test03 a ≡ False lemma = refl @@ -151,11 +182,11 @@ id a = a -n-push : {A : Set} {a : A} -> Nat -> SingleLinkedStack A -> SingleLinkedStack A +n-push : {A : Set} {a : A} -> ℕ -> SingleLinkedStack A -> SingleLinkedStack A n-push zero s = s n-push {A} {a} (suc n) s = pushSingleLinkedStack (n-push {A} {a} n s) a (\s -> s) -n-pop : {A : Set} {a : A} -> Nat -> SingleLinkedStack A -> SingleLinkedStack A +n-pop : {A : Set} {a : A} -> ℕ -> SingleLinkedStack A -> SingleLinkedStack A n-pop zero s = s n-pop {A} {a} (suc n) s = popSingleLinkedStack (n-pop {A} {a} n s) (\s _ -> s) @@ -164,7 +195,7 @@ push-pop-equiv : {A : Set} {a : A} (s : SingleLinkedStack A) -> popSingleLinkedStack (pushSingleLinkedStack s a (\s -> s)) (\s _ -> s) ≡ s push-pop-equiv s = refl -push-and-n-pop : {A : Set} {a : A} (n : Nat) (s : SingleLinkedStack A) -> n-pop {A} {a} (suc n) (pushSingleLinkedStack s a id) ≡ n-pop {A} {a} n s +push-and-n-pop : {A : Set} {a : A} (n : ℕ) (s : SingleLinkedStack A) -> n-pop {A} {a} (suc n) (pushSingleLinkedStack s a id) ≡ n-pop {A} {a} n s push-and-n-pop zero s = refl push-and-n-pop {A} {a} (suc n) s = begin n-pop {A} {a} (suc (suc n)) (pushSingleLinkedStack s a id) @@ -177,7 +208,7 @@ ∎ -n-push-pop-equiv : {A : Set} {a : A} (n : Nat) (s : SingleLinkedStack A) -> (n-pop {A} {a} n (n-push {A} {a} n s)) ≡ s +n-push-pop-equiv : {A : Set} {a : A} (n : ℕ) (s : SingleLinkedStack A) -> (n-pop {A} {a} n (n-push {A} {a} n s)) ≡ s n-push-pop-equiv zero s = refl n-push-pop-equiv {A} {a} (suc n) s = begin n-pop {A} {a} (suc n) (n-push (suc n) s) @@ -190,5 +221,5 @@ ∎ -n-push-pop-equiv-empty : {A : Set} {a : A} -> (n : Nat) -> n-pop {A} {a} n (n-push {A} {a} n emptySingleLinkedStack) ≡ emptySingleLinkedStack +n-push-pop-equiv-empty : {A : Set} {a : A} -> (n : ℕ) -> n-pop {A} {a} n (n-push {A} {a} n emptySingleLinkedStack) ≡ emptySingleLinkedStack n-push-pop-equiv-empty n = n-push-pop-equiv n emptySingleLinkedStack