annotate hoareRedBlackTree.agda @ 656:30690aed1819

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sun, 21 Nov 2021 14:36:55 +0900
parents 37f5826ca7d2
children
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
rev   line source
586
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
1
576
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
2 module hoareRedBlackTree where
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
3
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
4
586
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
5 open import Level renaming (zero to Z ; suc to succ)
576
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
6
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
7 open import Data.Nat hiding (compare)
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
8 open import Data.Nat.Properties as NatProp
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
9 open import Data.Maybe
588
8627d35d4bff add data bt', and some function
ryokka
parents: 586
diff changeset
10 -- open import Data.Maybe.Properties
576
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
11 open import Data.Empty
578
7bacba816277 use list base simple stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 577
diff changeset
12 open import Data.List
586
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
13 open import Data.Product
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
14
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
15 open import Function as F hiding (const)
576
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
16
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
17 open import Relation.Binary
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
18 open import Relation.Binary.PropositionalEquality
585
42e8cf963c5c Add 'non inductiove record' tree, findT, replaceT, and insertT
ryokka
parents: 584
diff changeset
19 open import Relation.Nullary
579
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 578
diff changeset
20 open import logic
576
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
21
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
22
586
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
23
576
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
24 record TreeMethods {n m : Level } {a : Set n } {t : Set m } (treeImpl : Set n ) : Set (m Level.⊔ n) where
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
25 field
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
26 putImpl : treeImpl → a → (treeImpl → t) → t
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
27 getImpl : treeImpl → (treeImpl → Maybe a → t) → t
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
28 open TreeMethods
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
29
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
30 record Tree {n m : Level } {a : Set n } {t : Set m } (treeImpl : Set n ) : Set (m Level.⊔ n) where
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
31 field
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
32 tree : treeImpl
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
33 treeMethods : TreeMethods {n} {m} {a} {t} treeImpl
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
34 putTree : a → (Tree treeImpl → t) → t
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
35 putTree d next = putImpl (treeMethods ) tree d (\t1 → next (record {tree = t1 ; treeMethods = treeMethods} ))
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
36 getTree : (Tree treeImpl → Maybe a → t) → t
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
37 getTree next = getImpl (treeMethods ) tree (\t1 d → next (record {tree = t1 ; treeMethods = treeMethods} ) d )
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
38
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
39 open Tree
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
40
578
7bacba816277 use list base simple stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 577
diff changeset
41 SingleLinkedStack = List
7bacba816277 use list base simple stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 577
diff changeset
42
7bacba816277 use list base simple stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 577
diff changeset
43 emptySingleLinkedStack : {n : Level } {Data : Set n} -> SingleLinkedStack Data
7bacba816277 use list base simple stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 577
diff changeset
44 emptySingleLinkedStack = []
7bacba816277 use list base simple stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 577
diff changeset
45
586
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
46 clearSingleLinkedStack : {n m : Level } {Data : Set n} {t : Set m} -> SingleLinkedStack Data → ( SingleLinkedStack Data → t) → t
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
47 clearSingleLinkedStack [] cg = cg []
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
48 clearSingleLinkedStack (x ∷ as) cg = cg []
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
49
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
50 pushSingleLinkedStack : {n m : Level } {t : Set m } {Data : Set n} -> List Data -> Data -> (Code : SingleLinkedStack Data -> t) -> t
578
7bacba816277 use list base simple stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 577
diff changeset
51 pushSingleLinkedStack stack datum next = next ( datum ∷ stack )
7bacba816277 use list base simple stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 577
diff changeset
52
7bacba816277 use list base simple stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 577
diff changeset
53 popSingleLinkedStack : {n m : Level } {t : Set m } {a : Set n} -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> t) -> t
7bacba816277 use list base simple stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 577
diff changeset
54 popSingleLinkedStack [] cs = cs [] nothing
7bacba816277 use list base simple stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 577
diff changeset
55 popSingleLinkedStack (data1 ∷ s) cs = cs s (just data1)
7bacba816277 use list base simple stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 577
diff changeset
56
576
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
57 data Color {n : Level } : Set n where
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
58 Red : Color
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
59 Black : Color
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
60
578
7bacba816277 use list base simple stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 577
diff changeset
61 record Node {n : Level } (a : Set n) : Set n where
576
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
62 inductive
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
63 field
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
64 key : ℕ
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
65 value : a
578
7bacba816277 use list base simple stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 577
diff changeset
66 right : Maybe (Node a )
7bacba816277 use list base simple stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 577
diff changeset
67 left : Maybe (Node a )
576
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
68 color : Color {n}
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
69 open Node
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
70
580
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 579
diff changeset
71 record RedBlackTree {n : Level } (a : Set n) : Set n where
576
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
72 field
578
7bacba816277 use list base simple stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 577
diff changeset
73 root : Maybe (Node a )
7bacba816277 use list base simple stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 577
diff changeset
74 nodeStack : SingleLinkedStack (Node a )
586
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
75
576
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
76
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
77 open RedBlackTree
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
78
585
42e8cf963c5c Add 'non inductiove record' tree, findT, replaceT, and insertT
ryokka
parents: 584
diff changeset
79 -- record datum {n : Level} (a : Set n) : Set n where
42e8cf963c5c Add 'non inductiove record' tree, findT, replaceT, and insertT
ryokka
parents: 584
diff changeset
80 -- field
42e8cf963c5c Add 'non inductiove record' tree, findT, replaceT, and insertT
ryokka
parents: 584
diff changeset
81 -- key : ℕ
42e8cf963c5c Add 'non inductiove record' tree, findT, replaceT, and insertT
ryokka
parents: 584
diff changeset
82 -- val : a
42e8cf963c5c Add 'non inductiove record' tree, findT, replaceT, and insertT
ryokka
parents: 584
diff changeset
83
586
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
84 -- leaf nodes key is 0.
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
85 --
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
86 -- data BTree {n : Level} (a : Set n) (lk nk rk : ℕ) : Set n where
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
87 -- leaf : (l<n : lk < nk) → BTree a lk nk rk
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
88 -- node : (left : BTree a lk nk rk)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
89 -- → (datum : ℕ) → (right : BTree a lk nk rk)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
90 -- → BTree a lk nk rk
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
91
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
92
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
93 {-- tree に サイズ比較をつけたい(持ち運びたい)が leaf をどう扱うか問題(0にするとright についたときにおわる)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
94 終わってほしくないので node のときだけにしたいがそれだと根本的に厳しい(BTree a の再帰構造なので)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
95
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
96
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
97 --}
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
98
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
99 -- data BTree {n : Level} (a : Set n) : Set n where
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
100 -- leaf : BTree a
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
101 -- node : (left : BTree a )
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
102 -- → (datum : ℕ)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
103 -- → (right : BTree a )
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
104 -- → BTree a
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
105
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
106 -- {a b c : ℕ} {a≤b : a ≤ b } {b≤c : b ≤ c} →
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
107 -- trans≤ : {n : Level} {a : Set n} → Trans {_} {_} {_} {_} {_} {_} {ℕ} {ℕ} {ℕ} (λ x y → x < y) (λ y z → y < z) (λ x z → (x < z)) -- a≤b b≤c
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
108 -- trans≤ {n} {a} {i} {j} {k} i<j j<k = ≤-trans i<j {!!}
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
109 -- with i <? k
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
110 -- trans≤ {n} {a} {i} {j} {k} i<j j<k | yes p = p
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
111 -- trans≤ {n} {a} {i} {j} {k} i<j j<k | no ¬p = {!!}
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
112
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
113
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
114 -- data BTree {n : Level} {a : Set n} (p q : ℕ) : ℕ → Set n where
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
115 -- leaf : (p<q : p ≤ q ) → BTree p q 0
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
116 -- node : ∀ {hl hr h : ℕ}
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
117 -- → (key : ℕ)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
118 -- → (left : BTree {n} {a} p key hl )
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
119 -- → (right : BTree {n} {a} key q hr )
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
120 -- → BTree p q (suc h)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
121
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
122 -- leaf-inj : {n : Level} {a : Set n} {p q : ℕ} {pp qq : p ≤ q}
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
123 -- → (leaf {n} {a} pp) ≡ (leaf qq) → pp ≡ qq
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
124 -- leaf-inj refl = refl
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
125
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
126
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
127
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
128 -- node-inj : {n : Level} {a : Set n}
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
129 -- {k1 k2 h : ℕ} {l1 r1 : BTree {n} {a} h} {l2 r2 : BTree {n} {a} h}
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
130 -- → ((node {n} {a} {h} l1 k1 r1)) ≡ (node l2 k2 r2) → k1 ≡ k2
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
131 -- node-inj refl = refl
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
132
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
133 -- node-inj1 : {n : Level} {a : Set n}
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
134 -- {k1 k2 h hl1 hl2 hr1 hr2 p q : ℕ }
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
135 -- {l1 : BTree {n} {a} p k1 hl1 } {l2 : BTree {n} {a} p k2 hl2} {l1 : BTree {n} {a} k1 q hr1} {r2 : BTree {n} {a} k2 q hr2}
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
136 -- → (node {n} {a} {h} {?} {?} {?} {!!} {!!} ) ≡ (node {!!} {!!} {!!} ) → k1 ≡ k2
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
137 -- node-inj1 as = {!!}
585
42e8cf963c5c Add 'non inductiove record' tree, findT, replaceT, and insertT
ryokka
parents: 584
diff changeset
138
42e8cf963c5c Add 'non inductiove record' tree, findT, replaceT, and insertT
ryokka
parents: 584
diff changeset
139
42e8cf963c5c Add 'non inductiove record' tree, findT, replaceT, and insertT
ryokka
parents: 584
diff changeset
140
586
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
141 --- add relation find functions
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
142 -- fTree is start codeGear. findT2 is loop codeGear.
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
143 -- findT2 : {n m : Level } {a : Set n} {b lk rk kk1 kk2 : ℕ} {t : Set m}
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
144 -- → (k1<k2 : kk1 ≤ kk2) → BTree {n} {a} b lk rk → (key : ℕ)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
145 -- → SingleLinkedStack (BTree {n} {a} b lk rk)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
146 -- → ( (lk ≤ rk) → BTree {n} {a} b lk rk → SingleLinkedStack (BTree {n} {a} b lk rk) → t) → t
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
147 -- findT2 k1<k2 (leaf p<q) key stack cg = cg {!!} (leaf p<q) stack
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
148 -- findT2 k1<k2 (node key1 tree₁ tree₂) key stack cg with <-cmp key1 key
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
149 -- findT2 k1<k2 (node key1 tree₁ tree₂) key stack cg | tri≈ ¬a b ¬c = {!!}
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
150 -- findT2 k1<k2 (node key1 tree₁ tree₂) key stack cg | tri< a ¬b ¬c = {!!}
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
151 -- findT2 k1<k2 (node key1 tree₁ tree₂) key stack cg | tri> ¬a ¬b c = {!!}
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
152
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
153 -- cg k1<k2 (leaf p<q) stack
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
154 -- findT2 {n} {m} {a} {b} {kk1} {kk2} {t} k1<k2 (node rt key1 lt) key stack cg with <-cmp key1 key
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
155 -- findT2 {n} {m} {a} {b} {kk1} {kk2} {t} k1<k2 tree@(node rt key1 lt) key stack cg | tri≈ ¬lt eq ¬gt = cg {!!} tree stack
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
156 -- findT2 {n} {m} {a} {b} {kk1} {kk2} {t} k1<k2 (node rt key1 ltt) key stack cg | tri< lt ¬eq ¬gt = {!!}
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
157 -- findT2 {n} {m} {a} {b} {kk1} {kk2} {t} k1<k2 (node rt key1 ltt) key stack cg | tri> ¬lt ¬eq gt = {!!}
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
158
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
159
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
160 -- fTree : {n m : Level } {a : Set n} {b k1 k2 : ℕ} {t : Set m}
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
161 -- → BTree {n} {a} b → (key : ℕ)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
162 -- → SingleLinkedStack (BTree {n} {a} b) → ( k1 < k2 → BTree {n} {a} b → SingleLinkedStack (BTree {n} {a} b) → t) → t
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
163 -- fTree {n} {m} {a} {b} tree key stack cg = clearSingleLinkedStack stack (λ cstack → findT2 {n} {m} {a} {b} {0} {key} z≤n tree key cstack λ x x₁ x₂ → {!!})
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
164
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
165 {--
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
166 そもそも Tree は 高さを受け取るのではなく 関係だけを持つ
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
167 leaf は関係を受け取って tran で (0 < n < m)をつくる
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
168 --}
585
42e8cf963c5c Add 'non inductiove record' tree, findT, replaceT, and insertT
ryokka
parents: 584
diff changeset
169
42e8cf963c5c Add 'non inductiove record' tree, findT, replaceT, and insertT
ryokka
parents: 584
diff changeset
170
586
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
171 {-- 思いつき
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
172 Max Hight を持ち運んで必ず規定回数で止まるようにするのはあり…nきがする
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
173 Tree を作ったあとに 左右の最大 hight を比較して Max にするのは良い
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
174 操作時はMaxが減る。 途中で終わった場合や、値が見つかった場合は
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
175 受け取って Max を減らすだけの関数で既定回数数を減らすだけ
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
176
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
177 関数に持たせる?データに持たせる?
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
178 とりあえず関数(Data だと 再帰的な構造上定義が難しい)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
179
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
180 --}
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
181
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
182 data BTree {n : Level} {a : Set n} : (hight : ℕ) → Set n where
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
183 leaf : {p q h : ℕ } → (p<q : p ≤ q ) → BTree (suc h)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
184 node : { h : ℕ }
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
185 → (left : BTree {n} {a} (suc h) )
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
186 → (key : ℕ)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
187 → (right : BTree {n} {a} (suc h) )
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
188 → BTree h
585
42e8cf963c5c Add 'non inductiove record' tree, findT, replaceT, and insertT
ryokka
parents: 584
diff changeset
189
586
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
190 maxHight : {n m : Level} {a : Set n} {t : Set m} {h : ℕ} → (searchHight : ℕ) → (BTree {n} {a} h) → ℕ
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
191 maxHight {n} {m} {a} {t} zero (leaf p<q) = 0 -- root is leaf
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
192 maxHight {n} {m} {a} {t} (suc hi) (leaf p<q) = (suc hi) -- max
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
193 maxHight {n} {m} {a} {t} hi (node tree₁ key₁ tree₂) with (maxHight {n} {m} {a} {t} hi tree₁) | (maxHight {n} {m} {a} {t} hi tree₂)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
194 ... | lh | rh with <-cmp lh rh
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
195 maxHight {n} {m} {a} {t} hi (node tree₁ key₁ tree₂) | lh | rh | tri< a₁ ¬b ¬c = rh
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
196 maxHight {n} {m} {a} {t} hi (node tree₁ key₁ tree₂) | lh | rh | tri≈ ¬a b ¬c = lh
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
197 maxHight {n} {m} {a} {t} hi (node tree₁ key₁ tree₂) | lh | rh | tri> ¬a ¬b c = lh
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
198 -- maxHight {n} {m} {a} {t} hi (rnode tree₁ key₁ tree₂) = {!!}
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
199
585
42e8cf963c5c Add 'non inductiove record' tree, findT, replaceT, and insertT
ryokka
parents: 584
diff changeset
200
586
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
201 LastNodeIsLeaf : {n : Level} {a : Set n} → (h : ℕ) → (tree : BTree {n} {a} h) → (P : BTree {n} {a} (suc h) → ℕ → BTree {n} {a} (suc h) → Bool) → Bool
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
202 LastNodeIsLeaf h (leaf p<q) P = true
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
203 LastNodeIsLeaf h (node rt k1 lt) P = (P rt k1 lt) /\ LastNodeIsLeaf (suc h) lt (λ _ z _ → P lt z lt) /\ LastNodeIsLeaf (suc h) rt λ _ z _ → P lt z lt
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
204
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
205 -- allnodes : {n : Level} {a : Set n} → (t : BTreeEx {n} {a}) → (P : BTreeEx {n} {a} → ℕ → BTreeEx {n} {a} → Bool) → Bool
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
206 -- allnodes leafEx p = true
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
207 -- allnodes (nodeEx lt k rt) p = (p lt k rt) /\ allnodes lt p /\ allnodes rt p
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
208
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
209 -- MaxHightStop? : {n : Level} {a : Set n} → {h : ℕ} → (hight : ℕ) → (tree : BTree {n} {a} h) → (P : BTree {n} {a} (suc h) → ℕ → BTree {n} {a} (suc h) → Bool) → Bool
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
210 -- MaxHightStop? {n} {a} {.(suc _)} zero (leaf p<q) P = true
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
211 -- MaxHightStop? {n} {a} {.(suc _)} (suc allh) (leaf p<q) P = false
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
212 -- MaxHightStop? {n} {a} {h} zero (node lt k rt) P = false
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
213 -- MaxHightStop? {n} {a} {h} (suc allh) (node lt k rt) P = (P lt k lt) /\ (MaxHightStop? allh lt λ _ z _ → ) /\ (MaxHightStop? allh rt λ _ z _ → P rt z rt)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
214
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
215
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
216 SearchLeaf : {n : Level} {a : Set n} → (h : ℕ) → (t : BTree {n} {a} h) → Bool
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
217 SearchLeaf h tree = LastNodeIsLeaf h tree (λ l k r → LastNodeIsLeaf (suc h) l (λ _ j _ → j <B? k) /\ LastNodeIsLeaf (suc h) r (λ _ n _ → k <B? n))
585
42e8cf963c5c Add 'non inductiove record' tree, findT, replaceT, and insertT
ryokka
parents: 584
diff changeset
218
42e8cf963c5c Add 'non inductiove record' tree, findT, replaceT, and insertT
ryokka
parents: 584
diff changeset
219
586
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
220 {-- whats leaf relation...?
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
221 i think keys relation...
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
222 "leaf relation" maybe 0<"parent node key" ???
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
223 --}
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
224 test : {n : Level} {a : Set n} {h : ℕ} → BTree {n} {a} h
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
225 test {n} {a} {h} = (node (leaf {n} {a} {0} {2} z≤n) 2 (node (leaf {n} {a} {0} {3} z≤n) 3 (leaf {n} {a} {0} {3} z≤n)))
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
226
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
227 c : {n : Level} {a : Set n} → Bool
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
228 c {n} {a} = SearchLeaf {n} {a} 3 test
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
229
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
230 cm : {n : Level} {a : Set n} → ℕ
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
231 cm {n} {a} = maxHight {n} {n} {a} {a} {zero} {!!} test
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
232
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
233 lemma-all-leaf : {n : Level} {a : Set n} → (h : ℕ) → (tree : BTree {n} {a} h) → SearchLeaf h tree ≡ true
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
234 lemma-all-leaf .(suc _) (leaf p<q) = refl
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
235 lemma-all-leaf h tt@(node pltree k1 rtree) = {!!} -- lemma-all-leaf h tt
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
236 -- lemma-all-leaf .0 tt@(rnode ltree k1 rtree) = lemma-all-leaf zero tt
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
237
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
238 findT : {n m : Level } {a : Set n} {b left current : ℕ} {t : Set m}
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
239 → (ta<tb : left ≤ current) → BTree {n} {a} b → (key : ℕ)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
240 → SingleLinkedStack (BTree {n} {a} b)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
241 → (BTree {n} {a} b → SingleLinkedStack (BTree {n} {a} b) → t) → t
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
242 findT = {!!}
585
42e8cf963c5c Add 'non inductiove record' tree, findT, replaceT, and insertT
ryokka
parents: 584
diff changeset
243
586
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
244 -- findT {n} {m} {a} {b} {l} l<c (leaf p<q) key st cg = cg (leaf {n} {a} {b} {key} (z≤n)) st
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
245 -- findT l<c (node tree₁ key1 tree₂) key st cg with <-cmp key key1
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
246 -- findT l<c (node tree₁ key1 tree₂) key st cg | tri< a ¬b ¬c = {!!}
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
247 -- findT l<c (node tree₁ key1 tree₂) key st cg | tri≈ ¬a b ¬c = {!!}
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
248 -- findT l<c (node tree₁ key1 tree₂) key st cg | tri> ¬a ¬b c = {!!}
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
249 -- -- findT l<c tree@(node ltree key1 rtree) key st cg | tri≈ ¬lt eq ¬gt = cg tree st
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
250 -- findT {n} {m} {a} {b} {l} {cu} {?} l<c tree@(node {b} ltree key1 rtree) key st cg | tri< lt ¬eq ¬gt = ?
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
251 -- findT {n} {m} {a} {b} {l} {cu} l<c tree@(node ltree key1 rtree) key st cg | tri> ¬lt ¬eq gt = pushSingleLinkedStack st tree (λ st2 → findT {n} {m} {a} {b} {l} {cu} {!!} ({!!}) key st2 cg)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
252 -- findT の {!!} の部分は trans したやつが入ってほしい(型が合わない)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
253
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
254
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
255 --- nomal find
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
256 -- findT : {n m : Level } {a : Set n} {b left current : ℕ} {t : Set m}
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
257 -- → (ta<tb : left ≤ current) → BTree {n} {a} b → (key : ℕ)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
258 -- → SingleLinkedStack (BTree {n} {a} b)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
259 -- → (BTree {n} {a} b → SingleLinkedStack (BTree {n} {a} b) → t) → t
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
260
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
261 -- findT {n} {m} {a} {b} {l} l<c (leaf p<q) key st cg = cg (leaf {n} {a} {b} {key} (z≤n)) st
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
262 -- findT l<c (node tree₁ key1 tree₂) key st cg with <-cmp key key1
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
263 -- findT l<c tree@(node ltree key1 rtree) key st cg | tri≈ ¬lt eq ¬gt = cg tree st
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
264
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
265 -- findT {n} {m} {a} {b} {l} {cu} l<c tree@(node (leaf p<q) key1 rtree) key st cg | tri< lt ¬eq ¬gt = pushSingleLinkedStack st tree (λ st2 → {!!}) -- findT {n} {m} {a} {b} ⦃ !! ⦄ ⦃ !! ⦄ {!!} (leaf {n} {a} ⦃ !! ⦄ {cu} {!!}) key st2 cg)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
266
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
267 -- findT {n} {m} {a} {b} {l} {cu} l<c tree@(node ltt@(node ltree key₁ ltree₁) key1 rtree) key st cg | tri< lt ¬eq ¬gt = pushSingleLinkedStack st tree (λ st2 → findT {n} {m} {a} {b} ⦃ !! ⦄ ⦃ !! ⦄ {!!} {!!} key st2 cg)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
268
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
269 -- findT {n} {m} {a} {b} {l} {cu} l<c tree@(node ltree key1 rtree) key st cg | tri> ¬lt ¬eq gt = pushSingleLinkedStack st tree (λ st2 → findT {n} {m} {a} {b} {key} {key1} {!!} (rtree) key st2 cg)
585
42e8cf963c5c Add 'non inductiove record' tree, findT, replaceT, and insertT
ryokka
parents: 584
diff changeset
270
42e8cf963c5c Add 'non inductiove record' tree, findT, replaceT, and insertT
ryokka
parents: 584
diff changeset
271
586
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
272 -- findT l<c tree@(node {lh} {rh} {h} ltree key1 rtree) key st cg | tri≈ ¬lt eq ¬gt = cg tree st
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
273
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
274 -- findT {n} {m} {a} {b} {l} l<c tree@(node {lh} {rh} {h} ltree key1 rtree) key st cg | tri< lt ¬eq ¬gt = {!!} -- pushSingleLinkedStack st tree (λ st2 → findT {n} {m} {a} {lh} {rh} {h} {!!} ({!!}) key {!!} λ x x₁ → {!!})
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
275 -- findT l<c (node tree₁ key1 tree₂) key st cg | tri> ¬lt ¬eq gt = {!!}
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
276 -- findT (leaf p<q) key st cg = cg (leaf p<q ) st
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
277 -- findT (node tree₁ key₁ tree₂) key st cg with <-cmp key key₁
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
278 -- findT tree@(node tree₁ key₁ tree₂) key st cg | tri≈ ¬a b ¬c = cg tree st
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
279 -- findT tree@(node tree₁ key₁ tree₂) key st cg | tri< a ¬b ¬c = {!!}
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
280 -- findT tree@(node tree₁ key₁ tree₂) key st cg | tri> ¬a ¬b c = {!!}
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
281
585
42e8cf963c5c Add 'non inductiove record' tree, findT, replaceT, and insertT
ryokka
parents: 584
diff changeset
282
586
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
283 data BTreeEx {n : Level} {a : Set n} : Set n where
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
284 leafEx : BTreeEx
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
285 nodeEx :(left : BTreeEx {n} {a} )
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
286 → (key : ℕ)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
287 → (right : BTreeEx {n} {a} )
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
288 → BTreeEx
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
289
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
290
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
291 cmpMax : ℕ → ℕ → ℕ
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
292 cmpMax lh rh with <-cmp lh rh
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
293 cmpMax lh rh | tri< a ¬b ¬c = rh
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
294 cmpMax lh rh | tri≈ ¬a b ¬c = lh
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
295 cmpMax lh rh | tri> ¬a ¬b c₁ = lh
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
296
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
297
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
298 max1 : {n m : Level} {a : Set n} {t : Set m} → ℕ → (BTreeEx {n} {a}) → (ℕ → t) → t
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
299 max1 {n} {m} {a} {t} hi leafEx cg = cg hi
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
300 max1 {n} {m} {a} {t} hi (nodeEx tree₁ key₁ tree₂) cg = (max1 {n} {m} {a} {t} (suc hi) tree₁
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
301 (λ lh → (max1 {n} {m} {a} {t} (suc hi) tree₂ (λ rh → cg (cmpMax lh rh))) ))
585
42e8cf963c5c Add 'non inductiove record' tree, findT, replaceT, and insertT
ryokka
parents: 584
diff changeset
302
42e8cf963c5c Add 'non inductiove record' tree, findT, replaceT, and insertT
ryokka
parents: 584
diff changeset
303
586
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
304 max : {n m : Level} {a : Set n} {t : Set m} → (BTreeEx {n} {a}) → (ℕ → t) → t
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
305 max {n} {m} {a} {t} tree = max1 zero tree
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
306
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
307
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
308 maxI : {n m : Level} {a : Set n} {t : Set m} → (BTreeEx {n} {a}) → ℕ
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
309 maxI {n} {m} {a} {t} tree = max tree (λ x → x)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
310
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
311 -- bad proof
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
312 -- isStopMax? : {n m : Level} {a : Set n} {t : Set m} → ( tr : BTreeEx {n} {a}) → (max 0 tr (λ n → n ≡ n))
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
313 -- isStopMax? leafEx = refl
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
314 -- isStopMax? (nodeEx tree₁ key₁ tree₂) = {!!}
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
315
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
316 isStopMax? : {n m : Level} {a : Set n} {t : Set m} → ( tr : BTreeEx {n} {a}) → (max tr (λ eq → eq ≡ eq))
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
317 isStopMax? leafEx = refl
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
318 isStopMax? (nodeEx tree₁ key₁ tree₂) = max (nodeEx tree₁ key₁ tree₂) (λ n₁ → {!!})
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
319
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
320 ltreeSearchLeaf : {n m : Level} {a : Set n} {t : Set m} → (BTreeEx {n} {a}) → ((BTreeEx {n} {a}) → t) → t
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
321 ltreeSearchLeaf leafEx cg = cg leafEx
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
322 ltreeSearchLeaf (nodeEx tree₁ key₁ tree₂) cg = ltreeSearchLeaf tree₁ cg
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
323
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
324 ltreeStop? : {n m : Level} {a : Set n} {t : Set m} → (tree : BTreeEx {n} {a}) → ltreeSearchLeaf tree (λ tt → tt ≡ tt)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
325 ltreeStop? leafEx = refl
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
326 ltreeStop? {n} {m} {a} {t} (nodeEx tree₁ key₁ tree₂) = ltreeStop? {n} {m} {a} {t} tree₁
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
327
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
328 ltreeSearchNode : {n m : Level} {a : Set n} {t : Set m} → (key : ℕ) → (BTreeEx {n} {a}) → ( (BTreeEx {n} {a}) → t) → t
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
329 ltreeSearchNode key leafEx cg = cg leafEx
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
330 ltreeSearchNode key (nodeEx tree₁ key₁ tree₂) cg with <-cmp key key₁
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
331 ltreeSearchNode key (nodeEx tree₁ key₁ tree₂) cg | tri< a ¬b ¬c = ltreeSearchNode key tree₁ cg
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
332 ltreeSearchNode key tt@(nodeEx tree₁ key₁ tree₂) cg | tri≈ ¬a b ¬c = cg tt
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
333 ltreeSearchNode key (nodeEx tree₁ key₁ tree₂) cg | tri> ¬a ¬b c₁ = cg tree₂
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
334
585
42e8cf963c5c Add 'non inductiove record' tree, findT, replaceT, and insertT
ryokka
parents: 584
diff changeset
335
42e8cf963c5c Add 'non inductiove record' tree, findT, replaceT, and insertT
ryokka
parents: 584
diff changeset
336
42e8cf963c5c Add 'non inductiove record' tree, findT, replaceT, and insertT
ryokka
parents: 584
diff changeset
337
586
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
338 -- 何らかの集合のサイズが減っていれば良い…?
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
339 ltreeStoplem : {n m : Level} {a : Set n} {t : Set m}
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
340 → (key : ℕ) → (lt : BTreeEx {n} {a}) → (key1 : ℕ) → (rt : BTreeEx {n} {a}) → (p<q : key < key1 )
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
341 → (ℕ → BTreeEx {n} {a} → t ) → t
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
342
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
343 ltreeNodeStop? : {n m : Level} {a : Set n} {t : Set m} → (key : ℕ) → (tree : BTreeEx {n} {a}) → ltreeSearchNode key tree (λ tt → tt ≡ tt)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
344 ltreeNodeStop? key leafEx = refl
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
345 ltreeNodeStop? key (nodeEx tree₁ key₁ tree₂) with <-cmp key key₁
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
346 ltreeNodeStop? key (nodeEx tree₁ key₁ tree₂) | tri< a ¬b ¬c = {!!}
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
347
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
348 -- ltreeNodeStop? {!!} {!!}
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
349 {--
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
350 Failed to solve the following constraints:
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
351 [720] ltreeSearchNode ?4 ?5 (λ tt → tt ≡ tt)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
352 =< ltreeSearchNode key tree₁ (λ tt → tt ≡ tt)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
353 : Set n
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
354 --}
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
355 ltreeNodeStop? key (nodeEx tree₁ key₁ tree₂) | tri≈ ¬a b ¬c = refl
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
356 ltreeNodeStop? key (nodeEx tree₁ key₁ tree₂) | tri> ¬a ¬b c₁ = refl
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
357
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
358
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
359
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
360 -- rtreeSearchNode : {n m : Level} {a : Set n} {t : Set m} → (key : ℕ) → (BTreeEx {n} {a}) → ( (BTreeEx {n} {a}) → t) → t
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
361 -- rtreeSearchNode key leafEx cg = cg leafEx
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
362 -- rtreeSearchNode key (nodeEx tree₁ key₁ tree₂) cg with <-cmp key key₁
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
363 -- rtreeSearchNode key (nodeEx tree₁ key₁ tree₂) cg | tri< a ¬b ¬c = cg tree₂
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
364 -- rtreeSearchNode key tt@(nodeEx tree₁ key₁ tree₂) cg | tri≈ ¬a b ¬c = cg tt
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
365 -- rtreeSearchNode key (nodeEx tree₁ key₁ tree₂) cg | tri> ¬a ¬b c₁ = rtreeSearchNode key tree₁ cg
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
366
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
367
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
368 -- rtreeNodeStop? : {n m : Level} {a : Set n} {t : Set m} → (key : ℕ) → (tree : BTreeEx {n} {a}) → rtreeSearchNode key tree (λ tt → tt ≡ tt)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
369 -- rtreeNodeStop? key leafEx = refl
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
370 -- rtreeNodeStop? key (nodeEx tree₁ key₁ tree₂) with <-cmp key key₁
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
371 -- rtreeNodeStop? key (nodeEx tree₁ key₁ tree₂) | tri< a ¬b ¬c = refl
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
372 -- rtreeNodeStop? key (nodeEx tree₁ key₁ tree₂) | tri≈ ¬a b ¬c = refl
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
373 -- rtreeNodeStop? key (nodeEx tree₁ key₁ tree₂) | tri> ¬a ¬b c₁ = rtreeNodeStop? key {!!}
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
374
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
375
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
376 ltreeStoplem key lt key1 rt p<q cg = cg key (nodeEx lt key1 rt)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
377
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
378
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
379
585
42e8cf963c5c Add 'non inductiove record' tree, findT, replaceT, and insertT
ryokka
parents: 584
diff changeset
380
586
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
381 -- with (max {n} {m} {a} {t} (suc hi) tree₁ cg) | (max {n} {m} {a} {t} (suc hi) tree₂ cg)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
382 -- ... | lh | rh = {!!}
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
383
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
384 -- max {n} {m} {a} {t} hi (nodeEx tree₁ key₁ tree₂) cg | lh | rh | tri< a₁ ¬b ¬c = cg rh
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
385 -- max {n} {m} {a} {t} hi (nodeEx tree₁ key₁ tree₂) cg | lh | rh | tri≈ ¬a b ¬c = cg lh
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
386 -- max {n} {m} {a} {t} hi (nodeEx tree₁ key₁ tree₂) cg | lh | rh | tri> ¬a ¬b c = cg lh
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
387
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
388
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
389 -- findStop : {n m : Level } {a : Set n} {t : Set m} → BTreeEx {n} {a} → (key : ℕ) → SingleLinkedStack (BTreeEx) → (BTreeEx {n} → SingleLinkedStack (BTreeEx) → t) → t
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
390 -- findStop = {!!}
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
391
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
392 findTEx : {n m : Level } {a : Set n} {t : Set m} → BTreeEx {n} {a} → (key : ℕ) → SingleLinkedStack (BTreeEx) → (BTreeEx {n} → SingleLinkedStack (BTreeEx) → t) → t
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
393 findTEx leafEx sd st next = next leafEx st
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
394 findTEx (nodeEx ltree datum rtree) sd st next with <-cmp sd datum
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
395 findTEx tree@(nodeEx ltree datum rtree) sd st next | tri≈ ¬a b ¬c = next tree st
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
396 findTEx tree@(nodeEx ltree datum rtree) sd st next | tri< a ¬b ¬c = pushSingleLinkedStack st tree (λ st2 → findTEx ltree sd st2 next)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
397 findTEx tree@(nodeEx ltree datum rtree) sd st next | tri> ¬a ¬b c = pushSingleLinkedStack st tree (λ st2 → findTEx rtree sd st2 next)
585
42e8cf963c5c Add 'non inductiove record' tree, findT, replaceT, and insertT
ryokka
parents: 584
diff changeset
398
586
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
399 findL : {n m : Level } {a : Set n} {t : Set m} → BTreeEx {n} {a} → (key : ℕ) → SingleLinkedStack (BTreeEx) → (BTreeEx {n} → SingleLinkedStack (BTreeEx) → t) → t
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
400 findL leafEx key stack cg = cg leafEx stack
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
401 findL (nodeEx tree₁ key1 tree₂) key stack cg with (key1 ≤? key)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
402 findL (nodeEx tree₁ key1 tree₂) key stack cg | yes p with key1 ≟ key
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
403 findL tree@(nodeEx tree₁ key1 tree₂) key stack cg | yes p | yes p₁ = cg tree stack
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
404 findL tree@(nodeEx ltree key1 tree₂) key stack cg | yes p | no ¬p = pushSingleLinkedStack stack tree (λ stack1 → findL ltree key stack1 cg)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
405 findL (nodeEx tree₁ key1 tree₂) key stack cg | no ¬p = cg leafEx stack
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
406
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
407
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
408
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
409 allnodes : {n : Level} {a : Set n} → (t : BTreeEx {n} {a}) → (P : BTreeEx {n} {a} → ℕ → BTreeEx {n} {a} → Bool) → Bool
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
410 allnodes leafEx p = true
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
411 allnodes (nodeEx lt k rt) p = (p lt k rt) /\ allnodes lt p /\ allnodes rt p
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
412
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
413 find-leaf : {n : Level} {a : Set n} → (t : BTreeEx {n} {a}) → Bool
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
414 find-leaf tree = allnodes tree (λ l k r → allnodes l (λ _ j _ → j <B? k) /\ allnodes r (λ _ n _ → k <B? n))
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
415
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
416 testTree : {n : Level} {a : Set n} → BTreeEx {n} {a}
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
417 testTree {n} {a} = (nodeEx (nodeEx leafEx 1 leafEx) 2 (nodeEx leafEx 3 (nodeEx (nodeEx leafEx 4 leafEx) 5 (nodeEx leafEx 6 leafEx))))
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
418
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
419 badTree : {n : Level} {a : Set n} → BTreeEx {n} {a}
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
420 badTree {n} {a} = (nodeEx (nodeEx leafEx 3 leafEx) 2 leafEx)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
421
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
422
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
423
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
424 lemm : {n : Level} {a : Set n} → find-leaf {n} {a} testTree ≡ true
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
425 lemm = refl
585
42e8cf963c5c Add 'non inductiove record' tree, findT, replaceT, and insertT
ryokka
parents: 584
diff changeset
426
42e8cf963c5c Add 'non inductiove record' tree, findT, replaceT, and insertT
ryokka
parents: 584
diff changeset
427
586
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
428 bool-⊥ : true ≡ false → ⊥
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
429 bool-⊥ ()
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
430
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
431 {-- badTree --}
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
432 -- lemm1 : {n : level} {a : set n} → find-leaf {n} {a} badtree ≡ true
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
433 -- lemm1 {n} {a} with badtree
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
434 -- lemm1 {n} {a} | leafex = {!!}
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
435 -- lemm1 {n} {a} | nodeex gda key₁ gda₁ = {!!}
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
436
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
437 -- lemm-all : {n : Level} {a : Set n} (any-tree : BTreeEx {n} {a}) → find-leaf {n} {a} any-tree ≡ true
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
438 -- lemm-all leafEx = refl
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
439 -- lemm-all t@(nodeEx ltree k rtree) with (find-leaf t) ≟B true
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
440 -- lemm-all (nodeEx ltree k rtree) | yes p = p
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
441 -- lemm-all (nodeEx ltree k rtree) | no ¬p = {!!}
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
442
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
443 -- findT : {n m : Level } {a : Set n} {t : Set m} → BTree {n} {a} → (key : ℕ) → SingleLinkedStack (BTree a) → (BTree {n} a → SingleLinkedStack (BTree a) → t) → t
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
444 -- findT = ?
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
445
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
446 -- {--
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
447 -- 一旦の方針は hight を使って書く, 大小関係 (片方だけ) を持って証明しながら降りてく
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
448 -- --}
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
449
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
450
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
451 -- hoge = findTEx testTree 44 [] (λ t s → s)
585
42e8cf963c5c Add 'non inductiove record' tree, findT, replaceT, and insertT
ryokka
parents: 584
diff changeset
452
586
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
453 -- {--
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
454 -- Tree に対して l < x < r の条件を足すときに気になるのは l or r が leaf の場合
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
455 -- leaf のときだけ例外的な証明を書く必要ありそう
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
456 -- --}
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
457
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
458
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
459 -- {-- AVL Tree メモ
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
460 -- - $AGDA-HOME/Data/AVL.agda 関連を眺めた Tips
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
461 -- AVL は特徴として すべての枝の長さの差が1以内に収まっている木。バランスもできる。
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
462
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
463 -- AVL Tree には key , value , left right の他にkeyの 上限、下限、高さを持ってるらしい
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
464 -- (後ろに付いてるのは高さ+- 1 の関係をもってる)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
465
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
466 -- cast operation は木のサイズの log になる
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
467 -- (cast operation は… わすれた)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
468
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
469 -- insert では 同じ key の値があったら Node を置き換え
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
470
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
471
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
472 -- --}
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
473
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
474 -- -- findT testTreeType 44 [] (λ t st → t)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
475 -- -- leaf
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
476
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
477 -- -- findT testTree 44 [] (λ t st → st)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
478 -- -- node leaf 3 leaf ∷ node (node leaf 1 leaf) 2 (node leaf 3 leaf) ∷ []
585
42e8cf963c5c Add 'non inductiove record' tree, findT, replaceT, and insertT
ryokka
parents: 584
diff changeset
479
42e8cf963c5c Add 'non inductiove record' tree, findT, replaceT, and insertT
ryokka
parents: 584
diff changeset
480
586
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
481 -- -- findT testTreeType 3 [] (λ t st → t)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
482 -- -- node leaf 3 leaf
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
483
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
484 -- -- findT testTreeType 3 [] (λ t st → st)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
485 -- -- node (node leaf 1 leaf) 2 (node leaf 3 leaf) ∷ []
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
486
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
487
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
488 -- replaceT : {n m : Level } {a : Set n} {t : Set m} → BTree {n} a → ℕ → SingleLinkedStack (BTree a) → (BTree {n} a → t) → t
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
489 -- replaceT {n} {m} {a} {t} leaf n0 [] next = next (node leaf n0 leaf)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
490 -- replaceT {n} {m} {a} {t} tree@(node x datum x₁) n0 [] next = next tree
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
491
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
492 -- replaceT {n} {m} {a} {t} leaf n0 (leaf ∷ rstack) next = replaceT (node leaf n0 leaf) n0 rstack next
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
493
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
494
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
495 -- replaceT {n} {m} {a} {t} leaf n0 (node x datum x₁ ∷ rstack) next with <-cmp n0 datum
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
496 -- replaceT {n} {m} {a} {t} leaf n0 (tree@(node x datum x₁) ∷ rstack) next | tri≈ ¬a b ¬c = replaceT tree n0 rstack next
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
497 -- replaceT {n} {m} {a} {t} leaf n0 (node x datum x₁ ∷ rstack) next | tri< a₁ ¬b ¬c = replaceT (node (node leaf n0 leaf) datum x₁) n0 rstack next
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
498 -- replaceT {n} {m} {a} {t} leaf n0 (node x datum x₁ ∷ rstack) next | tri> ¬a ¬b c = replaceT (node x datum (node leaf n0 leaf)) n0 rstack next
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
499
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
500
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
501
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
502 -- replaceT {n} {m} {a} {t} tree@(node ltree datum rtree) n0 (leaf ∷ rstack) next = replaceT tree n0 rstack next
585
42e8cf963c5c Add 'non inductiove record' tree, findT, replaceT, and insertT
ryokka
parents: 584
diff changeset
503
586
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
504 -- -- bad some code
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
505 -- replaceT {n} {m} {a} {t} tree@(node ltree datum rtree) n0 ((node x rdatum x₁) ∷ rstack) next with <-cmp datum rdatum
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
506 -- replaceT {n} {m} {a} {t} (node ltree datum rtree) n0 (tree@(node x rdatum x₁) ∷ rstack) next
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
507 -- | tri≈ ¬a b ¬c = replaceT tree n0 rstack next
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
508 -- replaceT {n} {m} {a} {t} tree n0 (node x rdatum x₁ ∷ rstack) next
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
509 -- | tri< a₁ ¬b ¬c = replaceT (node tree rdatum x₁) n0 rstack next
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
510 -- replaceT {n} {m} {a} {t} tree n0 (node x rdatum x₁ ∷ rstack) next
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
511 -- | tri> ¬a ¬b c = replaceT (node x rdatum tree) n0 rstack next
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
512
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
513 -- insertT : {n m : Level } {a : Set n} {t : Set m} → BTree {n} a → ℕ → SingleLinkedStack (BTree a) → (BTree {n} a → t) → t
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
514 -- insertT tree n0 st next = findT tree n0 st ( λ new st2 → replaceT new n0 st2 next )
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
515
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
516
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
517 -- c1 : {n : Level} {a : Set n} → BTree {n} a
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
518 -- c1 = insertT leaf 1 [] (λ t → insertT t 3 [] (λ t → insertT t 5 [] (λ t → insertT t 7 [] (λ t → t))))
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
519
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
520 -- c2 : {n : Level} {a : Set n} → BTree {n} a
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
521 -- c2 = insertT leaf 5 [] (λ t → insertT t 3 [] (λ t → insertT t 1 [] (λ t → insertT t 7 [] (λ t → t))))
585
42e8cf963c5c Add 'non inductiove record' tree, findT, replaceT, and insertT
ryokka
parents: 584
diff changeset
522
586
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
523 -- -- -- 末
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
524 -- -- findDownEnd : {n m : Level} {a : Set n} {t : Set m} → (find : ℕ) → (any : BTree a) → findT any find [] (λ tt stack → {!!})
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
525 -- -- findDownEnd d tree = {!!}
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
526
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
527 -- find-insert : {n m : Level } {a : Set n} {t : Set m} → (any : BTree {n} a) → (key : ℕ) → insertT any key [] (λ x → findT x key [] (λ return _ → (key ≡ {!!})))
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
528 -- find-insert leaf key with <-cmp key key
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
529 -- find-insert leaf key | tri< a ¬b ¬c = ⊥-elim (¬c a )
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
530 -- find-insert leaf key | tri≈ ¬a b ¬c = {!!}
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
531 -- find-insert leaf key | tri> ¬a ¬b c = ⊥-elim (¬a c )
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
532 -- find-insert tr@(node any₁ datum any₂) key with <-cmp key datum
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
533 -- find-insert (node any₁ datum any₂) key | tri< a ¬b ¬c = {!!}
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
534 -- find-insert (node any₁ datum any₂) key | tri> ¬a ¬b c = {!!}
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
535 -- find-insert (node any₁ datum any₂) key | tri≈ ¬a b ¬c with <-cmp key datum
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
536 -- find-insert (node any₁ datum any₂) key | tri≈ ¬a b ¬c | tri< a ¬b ¬c₁ = {!!}
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
537 -- find-insert (node any₁ datum any₂) key | tri≈ ¬a b ¬c | tri> ¬a₁ ¬b c = {!!}
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
538 -- find-insert (node any₁ datum any₂) key | tri≈ ¬a b ¬c | tri≈ ¬a₁ b₁ ¬c₁ = {!!}
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
539
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
540 -- -- where
585
42e8cf963c5c Add 'non inductiove record' tree, findT, replaceT, and insertT
ryokka
parents: 584
diff changeset
541 -- find-lemma : {n m : Level} {a : Set n} {t : Set m} → BTree a → ℕ → SingleLinkedStack (BTree a) → (BTree a → SingleLinkedStack (BTree a) → t) → t
42e8cf963c5c Add 'non inductiove record' tree, findT, replaceT, and insertT
ryokka
parents: 584
diff changeset
542 -- find-lemma leaf ke st nt = nt leaf st
42e8cf963c5c Add 'non inductiove record' tree, findT, replaceT, and insertT
ryokka
parents: 584
diff changeset
543 -- find-lemma (node tr datum tr₁) ke st nt with <-cmp ke datum
42e8cf963c5c Add 'non inductiove record' tree, findT, replaceT, and insertT
ryokka
parents: 584
diff changeset
544 -- find-lemma tt@(node tr datum tr₁) ke st nt | tri< a ¬b ¬c = find-lemma tr ke (tt ∷ st) nt
42e8cf963c5c Add 'non inductiove record' tree, findT, replaceT, and insertT
ryokka
parents: 584
diff changeset
545 -- find-lemma tt@(node tr datum tr₁) ke st nt | tri≈ ¬a b ¬c = nt tt st
42e8cf963c5c Add 'non inductiove record' tree, findT, replaceT, and insertT
ryokka
parents: 584
diff changeset
546 -- find-lemma tt@(node tr datum tr₁) ke st nt | tri> ¬a ¬b c = find-lemma tr₁ ke (tt ∷ st) nt
576
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
547
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
548 ----
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
549 -- find node potition to insert or to delete, the path will be in the stack
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
550 --
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
551
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
552 {-# TERMINATING #-}
585
42e8cf963c5c Add 'non inductiove record' tree, findT, replaceT, and insertT
ryokka
parents: 584
diff changeset
553 findNode : {n m : Level } {a : Set n} {t : Set m} → RedBlackTree {n} a → (Node a ) → (RedBlackTree {n} a → t) → t
578
7bacba816277 use list base simple stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 577
diff changeset
554 findNode {n} {m} {a} {t} tree n0 next with root tree
7bacba816277 use list base simple stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 577
diff changeset
555 findNode {n} {m} {a} {t} tree n0 next | nothing = next tree
7bacba816277 use list base simple stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 577
diff changeset
556 findNode {n} {m} {a} {t} tree n0 next | just x with <-cmp (key x) (key n0)
7bacba816277 use list base simple stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 577
diff changeset
557 findNode {n} {m} {a} {t} tree n0 next | just x | tri≈ ¬a b ¬c = next tree
7bacba816277 use list base simple stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 577
diff changeset
558 findNode {n} {m} {a} {t} tree n0 next | just x | tri< a₁ ¬b ¬c = pushSingleLinkedStack (nodeStack tree) x (λ s → findNode (record {root = (left x) ; nodeStack = s}) n0 next)
7bacba816277 use list base simple stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 577
diff changeset
559 findNode {n} {m} {a} {t} tree n0 next | just x | tri> ¬a ¬b c = pushSingleLinkedStack (nodeStack tree) x (λ s → findNode (record {root = (right x) ; nodeStack = s}) n0 next)
576
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
560
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
561
585
42e8cf963c5c Add 'non inductiove record' tree, findT, replaceT, and insertT
ryokka
parents: 584
diff changeset
562
580
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 579
diff changeset
563 findNode1 : {n m : Level } {a : Set n} {t : Set m} → RedBlackTree {n} a → (Node a ) → (RedBlackTree {n} a → t) → t
578
7bacba816277 use list base simple stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 577
diff changeset
564 findNode1 {n} {m} {a} {t} tree n0 next = findNode2 (root tree) (nodeStack tree)
577
ac2293378d7a modify findNode1
ryokka
parents: 576
diff changeset
565 module FindNode where
578
7bacba816277 use list base simple stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 577
diff changeset
566 findNode2 : (Maybe (Node a )) → SingleLinkedStack (Node a ) → t
7bacba816277 use list base simple stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 577
diff changeset
567 findNode2 nothing st = next record { root = nothing ; nodeStack = st }
7bacba816277 use list base simple stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 577
diff changeset
568 findNode2 (just x) st with <-cmp (key n0) (key x)
7bacba816277 use list base simple stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 577
diff changeset
569 ... | tri≈ ¬a b ¬c = next (record {root = just x ; nodeStack = st })
7bacba816277 use list base simple stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 577
diff changeset
570 ... | tri< a ¬b ¬c = pushSingleLinkedStack st x (λ s1 → findNode2 (right x) s1)
7bacba816277 use list base simple stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 577
diff changeset
571 ... | tri> ¬a ¬b c = pushSingleLinkedStack st x (λ s1 → findNode2 (left x) s1)
576
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
572
585
42e8cf963c5c Add 'non inductiove record' tree, findT, replaceT, and insertT
ryokka
parents: 584
diff changeset
573 node001 : Node ℕ
578
7bacba816277 use list base simple stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 577
diff changeset
574 node001 = record { key = 2 ; value = 3 ; left = nothing ; right = nothing ; color = Black }
585
42e8cf963c5c Add 'non inductiove record' tree, findT, replaceT, and insertT
ryokka
parents: 584
diff changeset
575 node002 : Node ℕ
578
7bacba816277 use list base simple stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 577
diff changeset
576 node002 = record { key = 1 ; value = 3 ; left = just node001 ; right = nothing ; color = Black }
585
42e8cf963c5c Add 'non inductiove record' tree, findT, replaceT, and insertT
ryokka
parents: 584
diff changeset
577 node003 : Node ℕ
578
7bacba816277 use list base simple stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 577
diff changeset
578 node003 = record { key = 0 ; value = 3 ; left = just node002 ; right = nothing ; color = Black }
576
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
579
586
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents: 585
diff changeset
580 tes0t01 = findNode1 {Level.zero} {Level.zero} {ℕ} {RedBlackTree ℕ} ( record { root = nothing ; nodeStack = emptySingleLinkedStack } )
578
7bacba816277 use list base simple stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 577
diff changeset
581 node001 ( λ tree → tree )
7bacba816277 use list base simple stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 577
diff changeset
582 test002 = findNode1 {Level.zero} {Level.zero} {ℕ} {RedBlackTree ℕ} ( record { root = just node001 ; nodeStack = emptySingleLinkedStack } )
7bacba816277 use list base simple stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 577
diff changeset
583 node001 ( λ tree → tree )
7bacba816277 use list base simple stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 577
diff changeset
584 test003 = findNode1 {Level.zero} {Level.zero} {ℕ} {RedBlackTree ℕ} ( record { root = just node003 ; nodeStack = emptySingleLinkedStack } )
7bacba816277 use list base simple stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 577
diff changeset
585 node001 ( λ tree → tree )
7bacba816277 use list base simple stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 577
diff changeset
586 test004 = findNode {Level.zero} {Level.zero} {ℕ} {RedBlackTree ℕ} ( record { root = just node003 ; nodeStack = emptySingleLinkedStack } )
7bacba816277 use list base simple stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 577
diff changeset
587 node001 ( λ tree → tree )
576
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
588
583
d18df2e6135d add replaceNode
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 582
diff changeset
589 replaceNode : {n m : Level } {a : Set n} {t : Set m} → RedBlackTree {n} a → (Node a ) → (RedBlackTree {n} a → t) → t
d18df2e6135d add replaceNode
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 582
diff changeset
590 replaceNode {n} {m} {a} {t} tree n0 next = replaceNode2 (nodeStack tree) (λ newNode → next record { root = just newNode ; nodeStack = emptySingleLinkedStack } )
d18df2e6135d add replaceNode
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 582
diff changeset
591 module FindNodeR where
d18df2e6135d add replaceNode
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 582
diff changeset
592 replaceNode1 : (Maybe (Node a )) → Node a
585
42e8cf963c5c Add 'non inductiove record' tree, findT, replaceT, and insertT
ryokka
parents: 584
diff changeset
593 replaceNode1 nothing = record n0 { left = nothing ; right = nothing }
42e8cf963c5c Add 'non inductiove record' tree, findT, replaceT, and insertT
ryokka
parents: 584
diff changeset
594 replaceNode1 (just x) = record n0 { left = left x ; right = right x }
583
d18df2e6135d add replaceNode
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 582
diff changeset
595 replaceNode2 : SingleLinkedStack (Node a ) → (Node a → t) → t
585
42e8cf963c5c Add 'non inductiove record' tree, findT, replaceT, and insertT
ryokka
parents: 584
diff changeset
596 replaceNode2 [] next = next ( replaceNode1 (root tree) )
583
d18df2e6135d add replaceNode
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 582
diff changeset
597 replaceNode2 (x ∷ st) next with <-cmp (key x) (key n0)
d18df2e6135d add replaceNode
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 582
diff changeset
598 replaceNode2 (x ∷ st) next | tri< a ¬b ¬c = replaceNode2 st ( λ new → next ( record x { left = left new } ) )
d18df2e6135d add replaceNode
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 582
diff changeset
599 replaceNode2 (x ∷ st) next | tri≈ ¬a b ¬c = replaceNode2 st ( λ new → next ( record x { left = left new ; right = right new } ) )
d18df2e6135d add replaceNode
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 582
diff changeset
600 replaceNode2 (x ∷ st) next | tri> ¬a ¬b c = replaceNode2 st ( λ new → next ( record x { right = right new } ) )
d18df2e6135d add replaceNode
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 582
diff changeset
601
d18df2e6135d add replaceNode
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 582
diff changeset
602 insertNode : {n m : Level } {a : Set n} {t : Set m} → RedBlackTree {n} a → (Node a ) → (RedBlackTree {n} a → t) → t
d18df2e6135d add replaceNode
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 582
diff changeset
603 insertNode tree n0 next = findNode1 tree n0 ( λ new → replaceNode tree n0 next )
d18df2e6135d add replaceNode
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 582
diff changeset
604
576
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
605 createEmptyRedBlackTreeℕ : {n m : Level} {t : Set m} (a : Set n) (b : ℕ)
585
42e8cf963c5c Add 'non inductiove record' tree, findT, replaceT, and insertT
ryokka
parents: 584
diff changeset
606 → RedBlackTree {n} a
576
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
607 createEmptyRedBlackTreeℕ a b = record {
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
608 root = nothing
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
609 ; nodeStack = emptySingleLinkedStack
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
610 }
40d01b368e34 Temporary Push
ryokka
parents:
diff changeset
611
581
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 580
diff changeset
612 findNodeLeft : {n : Level } {a : Set n} (r : Node a ) (t : SingleLinkedStack (Node a)) → Set n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 580
diff changeset
613 findNodeLeft x [] = (left x ≡ nothing ) ∧ (right x ≡ nothing )
585
42e8cf963c5c Add 'non inductiove record' tree, findT, replaceT, and insertT
ryokka
parents: 584
diff changeset
614 findNodeLeft {n} x (h ∷ t) = Lift n ((key x) < (key h)) -- stack の top と比較するのはたぶん replace ...?
42e8cf963c5c Add 'non inductiove record' tree, findT, replaceT, and insertT
ryokka
parents: 584
diff changeset
615
581
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 580
diff changeset
616 findNodeRight : {n : Level } {a : Set n} (r : Node a ) (t : SingleLinkedStack (Node a)) → Set n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 580
diff changeset
617 findNodeRight x [] = (left x ≡ nothing ) ∧ (right x ≡ nothing )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 580
diff changeset
618 findNodeRight {n} x (h ∷ t) = Lift n ((key x) > (key h))
578
7bacba816277 use list base simple stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 577
diff changeset
619
589
37f5826ca7d2 minor fix
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 588
diff changeset
620 data FindNodeInvariant {n : Level } {a : Set n} : (t : SingleLinkedStack (Node a)) (node : Maybe (Node a) ) → Set n where
37f5826ca7d2 minor fix
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 588
diff changeset
621 fni-stackEmpty : (now : Maybe (Node a) ) → FindNodeInvariant [] now
37f5826ca7d2 minor fix
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 588
diff changeset
622 fni-treeEmpty : (st : SingleLinkedStack (Node a)) → FindNodeInvariant st nothing
37f5826ca7d2 minor fix
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 588
diff changeset
623 fni-Left : (x : Node a) (st : SingleLinkedStack (Node a)) (node : Maybe (Node a ))
37f5826ca7d2 minor fix
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 588
diff changeset
624 → FindNodeInvariant ( x ∷ st ) node → findNodeLeft x st → FindNodeInvariant st node
37f5826ca7d2 minor fix
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 588
diff changeset
625 fni-Right : (x : Node a) (st : SingleLinkedStack (Node a)) (node : Maybe (Node a ))
37f5826ca7d2 minor fix
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 588
diff changeset
626 → FindNodeInvariant ( x ∷ st ) node → findNodeRight x st → FindNodeInvariant st node
585
42e8cf963c5c Add 'non inductiove record' tree, findT, replaceT, and insertT
ryokka
parents: 584
diff changeset
627 findNodeLoop : {n : Level } {a : Set n} (r : Node a ) (t : SingleLinkedStack (Node a)) → Set n
42e8cf963c5c Add 'non inductiove record' tree, findT, replaceT, and insertT
ryokka
parents: 584
diff changeset
628 findNodeLoop x st = ((findNodeRight x st) ∨ (findNodeLeft x st))
42e8cf963c5c Add 'non inductiove record' tree, findT, replaceT, and insertT
ryokka
parents: 584
diff changeset
629
589
37f5826ca7d2 minor fix
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 588
diff changeset
630 findNode1h : {n m : Level } {a : Set n} {t : Set m} → (tree : RedBlackTree {n} a ) → (Node a )
37f5826ca7d2 minor fix
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 588
diff changeset
631 → ((new : RedBlackTree {n} a) → FindNodeInvariant (nodeStack new) (root new ) → t )
37f5826ca7d2 minor fix
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 588
diff changeset
632 → ( FindNodeInvariant (nodeStack tree) (root tree) ) → t
37f5826ca7d2 minor fix
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 588
diff changeset
633 findNode1h {n} {m} {a} {t} tree n0 next prev = findNode2h (root tree) (nodeStack tree) prev
37f5826ca7d2 minor fix
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 588
diff changeset
634 module FindNodeH where
37f5826ca7d2 minor fix
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 588
diff changeset
635 findNode2h : (new : Maybe (Node a )) → (s : SingleLinkedStack (Node a )) → FindNodeInvariant s new → t
37f5826ca7d2 minor fix
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 588
diff changeset
636 findNode2h nothing st prev = next record { root = nothing ; nodeStack = st } prev
37f5826ca7d2 minor fix
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 588
diff changeset
637 findNode2h (just x) st prev with <-cmp (key n0) (key x)
37f5826ca7d2 minor fix
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 588
diff changeset
638 ... | tri≈ ¬a b ¬c = next (record {root = just x ; nodeStack = st }) prev
37f5826ca7d2 minor fix
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 588
diff changeset
639 ... | tri< a ¬b ¬c = pushSingleLinkedStack st x (λ s1 → findNode2h (right x) s1 (fni-Left x s1 {!!} {!!} {!!}) )
37f5826ca7d2 minor fix
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 588
diff changeset
640 ... | tri> ¬a ¬b c = pushSingleLinkedStack st x (λ s1 → findNode2h (left x) s1 (fni-Right x s1 {!!} {!!} {!!}) )
578
7bacba816277 use list base simple stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 577
diff changeset
641
7bacba816277 use list base simple stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 577
diff changeset
642
584
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 583
diff changeset
643 -- replaceNodeH : {n m : Level } {a : Set n} {t : Set m} → RedBlackTree {n} a → (Node a ) → (RedBlackTree {n} a → {!!} → t) → {!!} → t
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 583
diff changeset
644 -- replaceNodeH = {!!}