annotate hoareBinaryTree.agda @ 619:a3fbc9b57015

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sun, 07 Nov 2021 19:43:16 +0900
parents 5702800c79bc
children fe8c2d82c05c
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
rev   line source
586
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
1 module hoareBinaryTree where
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
2
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
3 open import Level renaming (zero to Z ; suc to succ)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
4
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
5 open import Data.Nat hiding (compare)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
6 open import Data.Nat.Properties as NatProp
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
7 open import Data.Maybe
588
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
8 -- open import Data.Maybe.Properties
586
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
9 open import Data.Empty
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
10 open import Data.List
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
11 open import Data.Product
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
12
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
13 open import Function as F hiding (const)
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
14
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
15 open import Relation.Binary
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
16 open import Relation.Binary.PropositionalEquality
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
17 open import Relation.Nullary
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
18 open import logic
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
19
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
20
588
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
21 _iso_ : {n : Level} {a : Set n} → ℕ → ℕ → Set
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
22 d iso d' = (¬ (suc d ≤ d')) ∧ (¬ (suc d' ≤ d))
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
23
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
24 iso-intro : {n : Level} {a : Set n} {x y : ℕ} → ¬ (suc x ≤ y) → ¬ (suc y ≤ x) → _iso_ {n} {a} x y
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
25 iso-intro = λ z z₁ → record { proj1 = z ; proj2 = z₁ }
8627d35d4bff add data bt', and some function
ryokka
parents: 587
diff changeset
26
590
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 589
diff changeset
27 --
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 589
diff changeset
28 --
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 589
diff changeset
29 -- no children , having left node , having right node , having both
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 589
diff changeset
30 --
597
ryokka
parents: 596
diff changeset
31 data bt {n : Level} (A : Set n) : Set n where
604
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
32 leaf : bt A
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
33 node : (key : ℕ) → (value : A) →
610
8239583dac0b add one more stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 609
diff changeset
34 (left : bt A ) → (right : bt A ) → bt A
600
016a8deed93d fix old binary tree
ryokka
parents: 597
diff changeset
35
609
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
36 bt-depth : {n : Level} {A : Set n} → (tree : bt A ) → ℕ
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
37 bt-depth leaf = 0
618
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 617
diff changeset
38 bt-depth (node key value t t₁) = suc (Data.Nat._⊔_ (bt-depth t ) (bt-depth t₁ ))
606
61a0491a627b with Hoare condition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 605
diff changeset
39
609
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
40 find : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree : bt A ) → List (bt A)
604
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
41 → (next : bt A → List (bt A) → t ) → (exit : bt A → List (bt A) → t ) → t
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
42 find key leaf st _ exit = exit leaf st
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
43 find key (node key₁ v tree tree₁) st next exit with <-cmp key key₁
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
44 find key n st _ exit | tri≈ ¬a b ¬c = exit n st
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
45 find key n@(node key₁ v tree tree₁) st next _ | tri< a ¬b ¬c = next tree (n ∷ st)
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
46 find key n@(node key₁ v tree tree₁) st next _ | tri> ¬a ¬b c = next tree₁ (n ∷ st)
597
ryokka
parents: 596
diff changeset
47
604
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
48 {-# TERMINATING #-}
609
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
49 find-loop : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → bt A → List (bt A) → (exit : bt A → List (bt A) → t) → t
611
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 610
diff changeset
50 find-loop {n} {m} {A} {t} key tree st exit = find-loop1 tree st where
604
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
51 find-loop1 : bt A → List (bt A) → t
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
52 find-loop1 tree st = find key tree st find-loop1 exit
600
016a8deed93d fix old binary tree
ryokka
parents: 597
diff changeset
53
611
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 610
diff changeset
54 replaceNode : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → bt A → (bt A → t) → t
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 610
diff changeset
55 replaceNode k v leaf next = next (node k v leaf leaf)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 610
diff changeset
56 replaceNode k v (node key value t t₁) next = next (node k v t t₁)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 610
diff changeset
57
609
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
58 replace : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → bt A → List (bt A) → (next : ℕ → A → bt A → List (bt A) → t ) → (exit : bt A → t) → t
604
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
59 replace key value tree [] next exit = exit tree
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
60 replace key value tree (leaf ∷ st) next exit = next key value tree st
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
61 replace key value tree (node key₁ value₁ left right ∷ st) next exit with <-cmp key key₁
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
62 ... | tri< a ¬b ¬c = next key value (node key₁ value₁ tree right ) st
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
63 ... | tri≈ ¬a b ¬c = next key value (node key₁ value left right ) st
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
64 ... | tri> ¬a ¬b c = next key value (node key₁ value₁ left tree ) st
586
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
65
604
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
66 {-# TERMINATING #-}
609
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
67 replace-loop : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → bt A → List (bt A) → (exit : bt A → t) → t
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
68 replace-loop {_} {_} {A} {t} key value tree st exit = replace-loop1 key value tree st where
604
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
69 replace-loop1 : (key : ℕ) → (value : A) → bt A → List (bt A) → t
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
70 replace-loop1 key value tree st = replace key value tree st replace-loop1 exit
586
0ddfa505d612 isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff changeset
71
609
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
72 insertTree : {n m : Level} {A : Set n} {t : Set m} → (tree : bt A) → (key : ℕ) → (value : A) → (next : bt A → t ) → t
611
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 610
diff changeset
73 insertTree tree key value exit = find-loop key tree [] $ λ t st → replaceNode key value t $ λ t1 → replace-loop key value t1 st exit
587
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
74
604
2075785a124a new approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 601
diff changeset
75 insertTest1 = insertTree leaf 1 1 (λ x → x )
611
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 610
diff changeset
76 insertTest2 = insertTree insertTest1 2 1 (λ x → x )
587
f103f07c0552 add insert code
ryokka
parents: 586
diff changeset
77
605
f8cc98fcc34b define invariant
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 604
diff changeset
78 open import Data.Unit hiding ( _≟_ ; _≤?_ ; _≤_)
f8cc98fcc34b define invariant
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 604
diff changeset
79
f8cc98fcc34b define invariant
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 604
diff changeset
80 treeInvariant : {n : Level} {A : Set n} → (tree : bt A) → Set
f8cc98fcc34b define invariant
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 604
diff changeset
81 treeInvariant leaf = ⊤
f8cc98fcc34b define invariant
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 604
diff changeset
82 treeInvariant (node key value leaf leaf) = ⊤
f8cc98fcc34b define invariant
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 604
diff changeset
83 treeInvariant (node key value leaf n@(node key₁ value₁ t₁ t₂)) = (key < key₁) ∧ treeInvariant n
f8cc98fcc34b define invariant
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 604
diff changeset
84 treeInvariant (node key value n@(node key₁ value₁ t t₁) leaf) = treeInvariant n ∧ (key < key₁)
f8cc98fcc34b define invariant
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 604
diff changeset
85 treeInvariant (node key value n@(node key₁ value₁ t t₁) m@(node key₂ value₂ t₂ t₃)) = treeInvariant n ∧ (key < key₁) ∧ (key₁ < key₂) ∧ treeInvariant m
f8cc98fcc34b define invariant
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 604
diff changeset
86
f8cc98fcc34b define invariant
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 604
diff changeset
87 treeInvariantTest1 = treeInvariant (node 3 0 leaf (node 1 1 leaf (node 3 5 leaf leaf)))
f8cc98fcc34b define invariant
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 604
diff changeset
88
610
8239583dac0b add one more stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 609
diff changeset
89 stackInvariant : {n : Level} {A : Set n} → (tree : bt A) → (stack : List (bt A)) → Set n
8239583dac0b add one more stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 609
diff changeset
90 stackInvariant {_} {A} _ [] = Lift _ ⊤
8239583dac0b add one more stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 609
diff changeset
91 stackInvariant {_} {A} tree (tree1 ∷ [] ) = tree1 ≡ tree
8239583dac0b add one more stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 609
diff changeset
92 stackInvariant {_} {A} tree (x ∷ tail @ (node key value leaf right ∷ _) ) = (right ≡ x) ∧ stackInvariant tree tail
8239583dac0b add one more stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 609
diff changeset
93 stackInvariant {_} {A} tree (x ∷ tail @ (node key value left leaf ∷ _) ) = (left ≡ x) ∧ stackInvariant tree tail
8239583dac0b add one more stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 609
diff changeset
94 stackInvariant {_} {A} tree (x ∷ tail @ (node key value left right ∷ _ )) = ( (left ≡ x) ∧ stackInvariant tree tail) ∨ ( (right ≡ x) ∧ stackInvariant tree tail)
8239583dac0b add one more stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 609
diff changeset
95 stackInvariant {_} {A} tree s = Lift _ ⊥
606
61a0491a627b with Hoare condition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 605
diff changeset
96
613
eeb9eb38e5e2 data replacedTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 612
diff changeset
97 data replacedTree {n : Level} {A : Set n} (key : ℕ) (value : A) : (tree tree1 : bt A ) → Set n where
615
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
98 r-leaf : replacedTree key value leaf (node key value leaf leaf)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
99 r-node : {value₁ : A} → {t t₁ : bt A} → replacedTree key value (node key value₁ t t₁) (node key value t t₁)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
100 r-right : {k : ℕ } {v : A} → {t t1 t2 : bt A}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
101 → k > key → ( replacedTree key value t1 t2 → replacedTree key value (node k v t t1) (node k v t t2) )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
102 r-left : {k : ℕ } {v : A} → {t t1 t2 : bt A}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
103 → k < key → ( replacedTree key value t1 t2 → replacedTree key value (node k v t1 t) (node k v t2 t) )
611
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 610
diff changeset
104
615
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
105 findP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree tree0 : bt A ) → (stack : List (bt A))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
106 → treeInvariant tree ∧ stackInvariant tree0 stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
107 → (next : (tree1 tree0 : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant tree0 stack → bt-depth tree1 < bt-depth tree → t )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
108 → (exit : (tree1 tree0 : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant tree0 stack → t ) → t
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
109 findP key leaf tree0 st Pre _ exit = exit leaf tree0 st {!!}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
110 findP key (node key₁ v tree tree₁) tree0 st Pre next exit with <-cmp key key₁
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
111 findP key n tree0 st Pre _ exit | tri≈ ¬a b ¬c = exit n tree0 st {!!}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
112 findP key n@(node key₁ v tree tree₁) tree0 st Pre next _ | tri< a ¬b ¬c = next tree tree0 (n ∷ st) {!!} {!!}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
113 findP key n@(node key₁ v tree tree₁) tree0 st Pre next _ | tri> ¬a ¬b c = next tree₁ tree0 (n ∷ st) {!!} {!!}
606
61a0491a627b with Hoare condition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 605
diff changeset
114
611
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 610
diff changeset
115 replaceNodeP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → (tree : bt A) → (treeInvariant tree )
613
eeb9eb38e5e2 data replacedTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 612
diff changeset
116 → ((tree1 : bt A) → treeInvariant tree1 → replacedTree key value tree tree1 → t) → t
eeb9eb38e5e2 data replacedTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 612
diff changeset
117 replaceNodeP k v leaf P next = next (node k v leaf leaf) {!!} {!!}
eeb9eb38e5e2 data replacedTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 612
diff changeset
118 replaceNodeP k v (node key value t t₁) P next = next (node k v t t₁) {!!} {!!}
606
61a0491a627b with Hoare condition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 605
diff changeset
119
609
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
120 replaceP : {n m : Level} {A : Set n} {t : Set m}
613
eeb9eb38e5e2 data replacedTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 612
diff changeset
121 → (key : ℕ) → (value : A) → (tree repl : bt A) → (stack : List (bt A)) → treeInvariant tree ∧ stackInvariant tree stack ∧ replacedTree key value tree repl
614
0c174b6239a0 connected
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 613
diff changeset
122 → (next : ℕ → A → (tree1 repl : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant tree1 stack ∧ replacedTree key value tree1 repl → bt-depth tree1 < bt-depth tree → t )
613
eeb9eb38e5e2 data replacedTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 612
diff changeset
123 → (exit : (tree1 repl : bt A) → treeInvariant tree1 ∧ replacedTree key value tree1 repl → t) → t
eeb9eb38e5e2 data replacedTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 612
diff changeset
124 replaceP key value tree repl [] Pre next exit = exit tree repl {!!}
614
0c174b6239a0 connected
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 613
diff changeset
125 replaceP key value tree repl (leaf ∷ st) Pre next exit = next key value tree {!!} st {!!} {!!}
613
eeb9eb38e5e2 data replacedTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 612
diff changeset
126 replaceP key value tree repl (node key₁ value₁ left right ∷ st) Pre next exit with <-cmp key key₁
614
0c174b6239a0 connected
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 613
diff changeset
127 ... | tri< a ¬b ¬c = next key value (node key₁ value₁ tree right ) {!!} st {!!} {!!}
0c174b6239a0 connected
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 613
diff changeset
128 ... | tri≈ ¬a b ¬c = next key value (node key₁ value left right ) {!!} st {!!} {!!}
0c174b6239a0 connected
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 613
diff changeset
129 ... | tri> ¬a ¬b c = next key value (node key₁ value₁ left tree ) {!!} st {!!} {!!}
606
61a0491a627b with Hoare condition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 605
diff changeset
130
609
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
131 open import Relation.Binary.Definitions
606
61a0491a627b with Hoare condition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 605
diff changeset
132
609
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
133 nat-≤> : { x y : ℕ } → x ≤ y → y < x → ⊥
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
134 nat-≤> (s≤s x<y) (s≤s y<x) = nat-≤> x<y y<x
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
135 lemma3 : {i j : ℕ} → 0 ≡ i → j < i → ⊥
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
136 lemma3 refl ()
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
137 lemma5 : {i j : ℕ} → i < 1 → j < i → ⊥
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
138 lemma5 (s≤s z≤n) ()
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
139
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
140 TerminatingLoopS : {l m : Level} {t : Set l} (Index : Set m ) → {Invraiant : Index → Set m } → ( reduce : Index → ℕ)
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
141 → (r : Index) → (p : Invraiant r)
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
142 → (loop : (r : Index) → Invraiant r → (next : (r1 : Index) → Invraiant r1 → reduce r1 < reduce r → t ) → t) → t
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
143 TerminatingLoopS {_} {_} {t} Index {Invraiant} reduce r p loop with <-cmp 0 (reduce r)
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
144 ... | tri≈ ¬a b ¬c = loop r p (λ r1 p1 lt → ⊥-elim (lemma3 b lt) )
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
145 ... | tri< a ¬b ¬c = loop r p (λ r1 p1 lt1 → TerminatingLoop1 (reduce r) r r1 (≤-step lt1) p1 lt1 ) where
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
146 TerminatingLoop1 : (j : ℕ) → (r r1 : Index) → reduce r1 < suc j → Invraiant r1 → reduce r1 < reduce r → t
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
147 TerminatingLoop1 zero r r1 n≤j p1 lt = loop r1 p1 (λ r2 p1 lt1 → ⊥-elim (lemma5 n≤j lt1))
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
148 TerminatingLoop1 (suc j) r r1 n≤j p1 lt with <-cmp (reduce r1) (suc j)
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
149 ... | tri< a ¬b ¬c = TerminatingLoop1 j r r1 a p1 lt
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
150 ... | tri≈ ¬a b ¬c = loop r1 p1 (λ r2 p2 lt1 → TerminatingLoop1 j r1 r2 (subst (λ k → reduce r2 < k ) b lt1 ) p2 lt1 )
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
151 ... | tri> ¬a ¬b c = ⊥-elim ( nat-≤> c n≤j )
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
152
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
153 open _∧_
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
154
615
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
155 RTtoTI0 : {n : Level} {A : Set n} → (tree repl : bt A) → (key : ℕ) → (value : A) → treeInvariant tree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
156 → replacedTree key value tree repl → treeInvariant repl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
157 RTtoTI0 = {!!}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
158
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
159 RTtoTI1 : {n : Level} {A : Set n} → (tree repl : bt A) → (key : ℕ) → (value : A) → treeInvariant repl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
160 → replacedTree key value tree repl → treeInvariant tree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
161 RTtoTI1 = {!!}
614
0c174b6239a0 connected
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 613
diff changeset
162
611
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 610
diff changeset
163 insertTreeP : {n m : Level} {A : Set n} {t : Set m} → (tree : bt A) → (key : ℕ) → (value : A) → treeInvariant tree
613
eeb9eb38e5e2 data replacedTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 612
diff changeset
164 → (exit : (tree repl : bt A) → treeInvariant tree ∧ replacedTree key value tree repl → t ) → t
610
8239583dac0b add one more stack
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 609
diff changeset
165 insertTreeP {n} {m} {A} {t} tree key value P exit =
615
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
166 TerminatingLoopS (bt A ∧ List (bt A) ) {λ p → treeInvariant (proj1 p) ∧ stackInvariant tree (proj2 p) } (λ p → bt-depth (proj1 p)) ⟪ tree , [] ⟫ ⟪ P , lift tt ⟫
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
167 $ λ p P loop → findP key (proj1 p) tree (proj2 p) {!!} (λ t _ s P1 lt → loop ⟪ t , s ⟫ {!!} lt )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
168 $ λ t _ s P → replaceNodeP key value t (proj1 P)
614
0c174b6239a0 connected
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 613
diff changeset
169 $ λ t1 P1 R → TerminatingLoopS (List (bt A) ∧ (bt A ∧ bt A ))
0c174b6239a0 connected
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 613
diff changeset
170 {λ p → treeInvariant (proj1 (proj2 p)) ∧ stackInvariant (proj1 (proj2 p)) (proj1 p) ∧ replacedTree key value (proj1 (proj2 p)) (proj2 (proj2 p)) }
615
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
171 (λ p → bt-depth (proj1 (proj2 p))) ⟪ s , ⟪ t , t1 ⟫ ⟫ ⟪ proj1 P , ⟪ {!!} , R ⟫ ⟫
614
0c174b6239a0 connected
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 613
diff changeset
172 $ λ p P1 loop → replaceP key value (proj1 (proj2 p)) (proj2 (proj2 p)) (proj1 p) P1
0c174b6239a0 connected
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 613
diff changeset
173 (λ key value tree1 repl1 stack P2 lt → loop ⟪ stack , ⟪ tree1 , repl1 ⟫ ⟫ P2 lt ) exit
0c174b6239a0 connected
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 613
diff changeset
174
609
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
175 top-value : {n : Level} {A : Set n} → (tree : bt A) → Maybe A
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
176 top-value leaf = nothing
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
177 top-value (node key value tree tree₁) = just value
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
178
612
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 611
diff changeset
179 insertTreeSpec0 : {n : Level} {A : Set n} → (tree : bt A) → (value : A) → top-value tree ≡ just value → ⊤
609
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
180 insertTreeSpec0 _ _ _ = tt
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
181
619
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 618
diff changeset
182 record findPR {n : Level} {A : Set n} (tree : bt A ) (stack : List (bt A)) : Set n where
618
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 617
diff changeset
183 field
619
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 618
diff changeset
184 tree0 : bt A
618
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 617
diff changeset
185 ti : treeInvariant tree
619
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 618
diff changeset
186 si : stackInvariant tree0 stack
618
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 617
diff changeset
187
616
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 615
diff changeset
188 findPP : {n m : Level} {A : Set n} {t : Set m}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 615
diff changeset
189 → (key : ℕ) → (tree : bt A ) → (stack : List (bt A))
619
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 618
diff changeset
190 → (Pre : bt A → List (bt A) → findPR tree stack )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 618
diff changeset
191 → (next : (tree1 : bt A) → (stack1 : List (bt A)) → findPR tree1 stack1 → bt-depth tree1 < bt-depth tree → t )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 618
diff changeset
192 → (exit : (tree1 : bt A) → (stack1 : List (bt A)) → findPR tree1 stack1 → t) → t
618
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 617
diff changeset
193 findPP key leaf st Pre next exit = exit leaf st (Pre leaf st )
616
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 615
diff changeset
194 findPP key (node key₁ v tree tree₁) st Pre next exit with <-cmp key key₁
618
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 617
diff changeset
195 findPP key n st P next exit | tri≈ ¬a b ¬c = exit n st (P n st)
619
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 618
diff changeset
196 findPP {_} {_} {A} key n@(node key₁ v tree tree₁) st Pre next exit | tri< a ¬b ¬c =
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 618
diff changeset
197 next tree (n ∷ st) (record {ti = findPP0 tree tree₁ (findPR.ti (Pre n st)) ; si = findPP2 st (findPR.si (Pre n st))} ) findPP1 where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 618
diff changeset
198 tree0 = findPR.tree0 (Pre n st)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 618
diff changeset
199 findPP0 : (tree tree₁ : bt A) → treeInvariant ( node key₁ v tree tree₁ ) → treeInvariant tree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 618
diff changeset
200 findPP0 leaf t x = tt
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 618
diff changeset
201 findPP0 (node key value tree tree₁) leaf x = proj1 x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 618
diff changeset
202 findPP0 (node key value tree tree₁) (node key₁ value₁ t t₁) x = proj1 x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 618
diff changeset
203 findPP2 : (st : List (bt A)) → stackInvariant tree0 st → stackInvariant tree0 (node key₁ v tree tree₁ ∷ st)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 618
diff changeset
204 findPP2 [] (lift tt) = {!!}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 618
diff changeset
205 findPP2 (leaf ∷ st) x = {!!}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 618
diff changeset
206 findPP2 (node key value leaf leaf ∷ st) x = {!!}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 618
diff changeset
207 findPP2 (node key value leaf (node key₁ value₁ x₂ x₃) ∷ st) x = {!!}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 618
diff changeset
208 findPP2 (node key value (node key₁ value₁ x₁ x₃) leaf ∷ st) x = {!!}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 618
diff changeset
209 findPP2 (node key value (node key₁ value₁ x₁ x₃) (node key₂ value₂ x₂ x₄) ∷ st) x = case1 ⟪ {!!} , {!!} ⟫
618
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 617
diff changeset
210 findPP1 : suc ( bt-depth tree ) ≤ suc (bt-depth tree Data.Nat.⊔ bt-depth tree₁)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 617
diff changeset
211 findPP1 = {!!}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 617
diff changeset
212 findPP key n@(node key₁ v tree tree₁) st Pre next exit | tri> ¬a ¬b c = next tree₁ (n ∷ st) {!!} findPP2 where -- Cond n st → Cond tree₁ (n ∷ st)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 617
diff changeset
213 findPP2 : suc (bt-depth tree₁) ≤ suc (bt-depth tree Data.Nat.⊔ bt-depth tree₁)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 617
diff changeset
214 findPP2 = {!!}
616
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 615
diff changeset
215
618
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 617
diff changeset
216 insertTreePP : {n m : Level} {A : Set n} {t : Set m} → (tree : bt A) → (key : ℕ) → (value : A) → treeInvariant tree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 617
diff changeset
217 → (exit : (tree repl : bt A) → treeInvariant tree ∧ replacedTree key value tree repl → t ) → t
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 617
diff changeset
218 insertTreePP {n} {m} {A} {t} tree key value P exit =
619
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 618
diff changeset
219 TerminatingLoopS (bt A ∧ List (bt A) ) {λ p → findPR (proj1 p) (proj2 p) } (λ p → bt-depth (proj1 p)) ⟪ tree , [] ⟫ {!!}
618
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 617
diff changeset
220 $ λ p P loop → findPP key (proj1 p) (proj2 p) {!!} (λ t s P1 lt → loop ⟪ t , s ⟫ {!!} lt )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 617
diff changeset
221 $ λ t s P → replaceNodeP key value t {!!}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 617
diff changeset
222 $ λ t1 P1 R → TerminatingLoopS (List (bt A) ∧ (bt A ∧ bt A ))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 617
diff changeset
223 {λ p → treeInvariant (proj1 (proj2 p)) ∧ stackInvariant (proj1 (proj2 p)) (proj1 p) ∧ replacedTree key value (proj1 (proj2 p)) (proj2 (proj2 p)) }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 617
diff changeset
224 (λ p → bt-depth (proj1 (proj2 p))) ⟪ s , ⟪ t , t1 ⟫ ⟫ ⟪ {!!} , ⟪ {!!} , R ⟫ ⟫
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 617
diff changeset
225 $ λ p P1 loop → replaceP key value (proj1 (proj2 p)) (proj2 (proj2 p)) (proj1 p) P1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 617
diff changeset
226 (λ key value tree1 repl1 stack P2 lt → loop ⟪ stack , ⟪ tree1 , repl1 ⟫ ⟫ P2 lt ) exit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 617
diff changeset
227
616
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 615
diff changeset
228 -- findP key tree stack = findPP key tree stack {findPR} → record { ti = tree-invariant tree ; si stack-invariant tree stack } →
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 615
diff changeset
229
617
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 616
diff changeset
230 record findP-contains {n : Level} {A : Set n} (tree : bt A ) (stack : List (bt A)) : Set n where
616
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 615
diff changeset
231 field
617
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 616
diff changeset
232 key1 : ℕ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 616
diff changeset
233 value1 : A
616
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 615
diff changeset
234 tree1 : bt A
617
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 616
diff changeset
235 ci : replacedTree key1 value1 tree tree1
616
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 615
diff changeset
236
618
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 617
diff changeset
237 containsTree : {n m : Level} {A : Set n} {t : Set m} → (tree tree1 : bt A) → (key : ℕ) → (value : A) → treeInvariant tree1 → replacedTree key value tree1 tree → ⊤
615
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
238 containsTree {n} {m} {A} {t} tree tree1 key value P RT =
617
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 616
diff changeset
239 TerminatingLoopS (bt A ∧ List (bt A) )
619
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 618
diff changeset
240 {λ p → findPR (proj1 p) (proj2 p) ∧ findP-contains (proj1 p) (proj2 p)} (λ p → bt-depth (proj1 p))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 618
diff changeset
241 ⟪ tree1 , [] ⟫ ⟪ {!!} , record { key1 = key ; value1 = value ; tree1 = tree ; ci = RT ; R = record { tree0 = {!!} ; ti = P ; si = lift tt } } ⟫
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 618
diff changeset
242 $ λ p P loop → findPP key (proj1 p) (proj2 p) {!!} (λ t s P1 lt → loop ⟪ t , s ⟫ ⟪ P1 , {!!} ⟫ lt )
617
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 616
diff changeset
243 $ λ t s P → insertTreeSpec0 t value {!!}
615
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 614
diff changeset
244
609
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
245 insertTreeSpec1 : {n : Level} {A : Set n} → (tree : bt A) → (key : ℕ) → (value : A) → treeInvariant tree → ⊤
79418701a283 add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 606
diff changeset
246 insertTreeSpec1 {n} {A} tree key value P =
613
eeb9eb38e5e2 data replacedTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 612
diff changeset
247 insertTreeP tree key value P (λ (tree₁ repl : bt A)
eeb9eb38e5e2 data replacedTree
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 612
diff changeset
248 (P1 : treeInvariant tree₁ ∧ replacedTree key value tree₁ repl ) → insertTreeSpec0 tree₁ value (lemma1 {!!} ) ) where
612
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 611
diff changeset
249 lemma1 : (tree₁ : bt A) → top-value tree₁ ≡ just value
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 611
diff changeset
250 lemma1 = {!!}