comparison logic.agda @ 586:0ddfa505d612

isolate search function problem, and add hoareBinaryTree.agda.
author ryokka
date Wed, 04 Dec 2019 15:42:47 +0900
parents 821d04c0770b
children 2075785a124a
comparison
equal deleted inserted replaced
585:42e8cf963c5c 586:0ddfa505d612
1 module logic where 1 module logic where
2 2
3 open import Level 3 open import Level
4 open import Relation.Nullary 4 open import Relation.Nullary
5 open import Relation.Binary 5 open import Relation.Binary
6 open import Relation.Binary.PropositionalEquality
7
6 open import Data.Empty 8 open import Data.Empty
9 open import Data.Nat hiding (_⊔_)
7 10
8 11
9 data Bool : Set where 12 data Bool : Set where
10 true : Bool 13 true : Bool
11 false : Bool 14 false : Bool
50 53
51 _/\_ : Bool → Bool → Bool 54 _/\_ : Bool → Bool → Bool
52 true /\ true = true 55 true /\ true = true
53 _ /\ _ = false 56 _ /\ _ = false
54 57
58 _<B?_ : ℕ → ℕ → Bool
59 ℕ.zero <B? x = true
60 ℕ.suc x <B? ℕ.zero = false
61 ℕ.suc x <B? ℕ.suc xx = x <B? xx
62
63 -- _<BT_ : ℕ → ℕ → Set
64 -- ℕ.zero <BT ℕ.zero = ⊤
65 -- ℕ.zero <BT ℕ.suc b = ⊤
66 -- ℕ.suc a <BT ℕ.zero = ⊥
67 -- ℕ.suc a <BT ℕ.suc b = a <BT b
68
69
70 _≟B_ : Decidable {A = Bool} _≡_
71 true ≟B true = yes refl
72 false ≟B false = yes refl
73 true ≟B false = no λ()
74 false ≟B true = no λ()
75
55 _\/_ : Bool → Bool → Bool 76 _\/_ : Bool → Bool → Bool
56 false \/ false = false 77 false \/ false = false
57 _ \/ _ = true 78 _ \/ _ = true
58 79
59 not_ : Bool → Bool 80 not_ : Bool → Bool