Mercurial > hg > Members > Moririn
comparison hoareBinaryTree.agda @ 612:57d6c594da08
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 05 Nov 2021 09:35:20 +0900 |
parents | db42d1033857 |
children | eeb9eb38e5e2 |
comparison
equal
deleted
inserted
replaced
611:db42d1033857 | 612:57d6c594da08 |
---|---|
116 → ((tree : bt A) → treeInvariant tree → (rstack : List (bt A)) → rstackInvariant tree rstack → t) → t | 116 → ((tree : bt A) → treeInvariant tree → (rstack : List (bt A)) → rstackInvariant tree rstack → t) → t |
117 replaceNodeP k v leaf P next = next (node k v leaf leaf) {!!} {!!} {!!} | 117 replaceNodeP k v leaf P next = next (node k v leaf leaf) {!!} {!!} {!!} |
118 replaceNodeP k v (node key value t t₁) P next = next (node k v t t₁) {!!} {!!} {!!} | 118 replaceNodeP k v (node key value t t₁) P next = next (node k v t t₁) {!!} {!!} {!!} |
119 | 119 |
120 replaceP : {n m : Level} {A : Set n} {t : Set m} | 120 replaceP : {n m : Level} {A : Set n} {t : Set m} |
121 → (key : ℕ) → (value : A) → (tree repl : bt A) → (stack rstack : List (bt A)) → treeInvariant tree ∧ stackInvariant tree stack ∧ rstackInvariant tree rstack | 121 → (key : ℕ) → (value : A) → (tree repl : bt A) → (stack rstack : List (bt A)) → treeInvariant tree ∧ stackInvariant tree stack ∧ rstackInvariant repl rstack |
122 → (next : ℕ → A → (tree1 repl : bt A) → (stack rstack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant tree1 stack ∧ rstackInvariant repl rstack → bt-depth tree1 < bt-depth tree → t ) | 122 → (next : ℕ → A → (tree1 : bt A) → (stack rstack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant tree1 stack ∧ rstackInvariant repl rstack → bt-depth tree1 < bt-depth tree → t ) |
123 → (exit : (tree1 repl : bt A) → (rstack : List (bt A)) → treeInvariant tree1 ∧ rstackInvariant repl rstack → t) → t | 123 → (exit : (tree1 repl : bt A) → (rstack : List (bt A)) → treeInvariant tree1 ∧ rstackInvariant repl rstack → t) → t |
124 replaceP key value tree repl [] rs Pre next exit = exit tree repl {!!} {!!} | 124 replaceP key value tree repl [] rs Pre next exit = exit tree repl {!!} {!!} |
125 replaceP key value tree repl (leaf ∷ st) rs Pre next exit = next key value tree repl st {!!} {!!} {!!} | 125 replaceP key value tree repl (leaf ∷ st) rs Pre next exit = next key value tree st {!!} {!!} {!!} |
126 replaceP key value tree repl (node key₁ value₁ left right ∷ st) rs Pre next exit with <-cmp key key₁ | 126 replaceP key value tree repl (node key₁ value₁ left right ∷ st) rs Pre next exit with <-cmp key key₁ |
127 ... | tri< a ¬b ¬c = next key value (node key₁ value₁ tree right ) repl st {!!} {!!} {!!} | 127 ... | tri< a ¬b ¬c = next key value (node key₁ value₁ tree right ) st {!!} {!!} {!!} |
128 ... | tri≈ ¬a b ¬c = next key value (node key₁ value left right ) repl st {!!} {!!} {!!} | 128 ... | tri≈ ¬a b ¬c = next key value (node key₁ value left right ) st {!!} {!!} {!!} |
129 ... | tri> ¬a ¬b c = next key value (node key₁ value₁ left tree ) repl st {!!} {!!} {!!} | 129 ... | tri> ¬a ¬b c = next key value (node key₁ value₁ left tree ) st {!!} {!!} {!!} |
130 | 130 |
131 open import Relation.Binary.Definitions | 131 open import Relation.Binary.Definitions |
132 | 132 |
133 nat-≤> : { x y : ℕ } → x ≤ y → y < x → ⊥ | 133 nat-≤> : { x y : ℕ } → x ≤ y → y < x → ⊥ |
134 nat-≤> (s≤s x<y) (s≤s y<x) = nat-≤> x<y y<x | 134 nat-≤> (s≤s x<y) (s≤s y<x) = nat-≤> x<y y<x |
159 $ λ p P loop → findP key (proj1 p) (proj2 p) P (λ t s P1 lt → loop ⟪ t , s ⟫ P1 lt ) | 159 $ λ p P loop → findP key (proj1 p) (proj2 p) P (λ t s P1 lt → loop ⟪ t , s ⟫ P1 lt ) |
160 $ λ t s P → replaceNodeP key value t (proj1 P) | 160 $ λ t s P → replaceNodeP key value t (proj1 P) |
161 $ λ t1 P1 r R → TerminatingLoopS (bt A ∧ List (bt A) ∧ List (bt A)) | 161 $ λ t1 P1 r R → TerminatingLoopS (bt A ∧ List (bt A) ∧ List (bt A)) |
162 {λ p → treeInvariant (proj1 p) ∧ stackInvariant (proj1 p) (proj1 (proj2 p)) ∧ rstackInvariant t1 (proj2 (proj2 p))} | 162 {λ p → treeInvariant (proj1 p) ∧ stackInvariant (proj1 p) (proj1 (proj2 p)) ∧ rstackInvariant t1 (proj2 (proj2 p))} |
163 (λ p → bt-depth (proj1 p)) ⟪ t , ⟪ s , r ⟫ ⟫ ⟪ proj1 P , ⟪ proj2 P , R ⟫ ⟫ | 163 (λ p → bt-depth (proj1 p)) ⟪ t , ⟪ s , r ⟫ ⟫ ⟪ proj1 P , ⟪ proj2 P , R ⟫ ⟫ |
164 $ λ p P1 loop → replaceP key value (proj1 p) {!!} (proj1 (proj2 p)) (proj2 (proj2 p)) {!!} (λ k v t repl s s1 P2 lt → loop ⟪ t , ⟪ {!!} , s1 ⟫ ⟫ {!!} {!!} ) exit | 164 $ λ p P1 loop → replaceP key value (proj1 p) t1 (proj1 (proj2 p)) (proj2 (proj2 p)) P1 (λ k v t s s1 P2 lt → loop ⟪ t , ⟪ s , s1 ⟫ ⟫ P2 lt ) exit |
165 | |
166 top-value : {n : Level} {A : Set n} → (tree : bt A) → Maybe A | 165 top-value : {n : Level} {A : Set n} → (tree : bt A) → Maybe A |
167 top-value leaf = nothing | 166 top-value leaf = nothing |
168 top-value (node key value tree tree₁) = just value | 167 top-value (node key value tree tree₁) = just value |
169 | 168 |
170 insertTreeSpec0 : {n : Level} {A : Set n} {t : Set n} → (tree : bt A) → (value : A) → top-value tree ≡ just value → ⊤ | 169 insertTreeSpec0 : {n : Level} {A : Set n} → (tree : bt A) → (value : A) → top-value tree ≡ just value → ⊤ |
171 insertTreeSpec0 _ _ _ = tt | 170 insertTreeSpec0 _ _ _ = tt |
172 | 171 |
173 insertTreeSpec1 : {n : Level} {A : Set n} → (tree : bt A) → (key : ℕ) → (value : A) → treeInvariant tree → ⊤ | 172 insertTreeSpec1 : {n : Level} {A : Set n} → (tree : bt A) → (key : ℕ) → (value : A) → treeInvariant tree → ⊤ |
174 insertTreeSpec1 {n} {A} tree key value P = | 173 insertTreeSpec1 {n} {A} tree key value P = |
175 insertTreeP tree key value P (λ (tree₁ repl : bt A) (rstack : List (bt A)) | 174 insertTreeP tree key value P (λ (tree₁ repl : bt A) (rstack : List (bt A)) |
176 (P1 : treeInvariant tree₁ ∧ rstackInvariant repl rstack ) → insertTreeSpec0 tree₁ value {!!} ) | 175 (P1 : treeInvariant tree₁ ∧ rstackInvariant repl rstack ) → insertTreeSpec0 tree₁ value (lemma1 {!!} ) ) where |
176 lemma1 : (tree₁ : bt A) → top-value tree₁ ≡ just value | |
177 lemma1 = {!!} |