Mercurial > hg > Members > Moririn
diff hoareBinaryTree1.agda @ 751:4ecad6cfef4b
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 26 Apr 2023 09:20:38 +0900 |
parents | 61e16b7489b8 |
children | 44837beece64 |
line wrap: on
line diff
--- a/hoareBinaryTree1.agda Wed Apr 26 09:10:12 2023 +0900 +++ b/hoareBinaryTree1.agda Wed Apr 26 09:20:38 2023 +0900 @@ -641,27 +641,33 @@ → (tree1 ≡ leaf ) ∨ ( node-key tree1 ≡ just key ) → t ) → t findRBT = ? -rotateRight : ? -rotateRight = ? - -rotateLeft : ? -rotateLeft = ? - insertCase5 : {n m : Level} {A : Set n} {t : Set m} - → (key : ℕ) → (value : A) → {key0 key1 key2 d0 d1 d2 : ℕ} {c0 c1 c2 : Color} - → (orig tree repl : bt (Color ∧ A) ) - → (si : ParentGrand ? ? ?) - → (ri : rotatedTree (RB→bt A tree) (RB→bt A repl)) - → (next : ℕ → A → {k1 k2 d1 d2 : ℕ} {c1 c2 : Color} → (tree1 repl1 : bt (Color ∧ A)) - → (si1 : ParentGrand ? ? ?) - → (ri : rotatedTree (RB→bt A tree1) (RB→bt A repl1)) - → length ? < length ? → t ) - → (exit : {k1 k2 d1 d2 : ℕ} {c1 c2 : Color} (tree1 repl1 : bt (Color ∧ A)) - → (ri : rotatedTree (RB→bt A orig) (RB→bt A repl1)) - → t ) → t + → (key : ℕ) → (value : A) → {d0 : ℕ} + → (orig tree rot repl : bt (Color ∧ A)) {d0 : ℕ} + → RBtreeInvariant orig d0 + → {d : ℕ} → RBtreeInvariant tree d → {dr : ℕ} → RBtreeInvariant repl dr + → (stack : List (bt (Color ∧ A))) → (si : stackInvariant key tree orig stack ) + → rotatedTree tree rot + → {c : Color} → replacedTree key ⟪ c , value ⟫ (child-replaced key rot) repl + → (next : {key2 d2 : ℕ} {c2 : Color} -- rotating case + → (to tr rot rr : bt (Color ∧ A)) + → RBtreeInvariant orig d0 + → {d : ℕ} → RBtreeInvariant tree d → {dr : ℕ} → RBtreeInvariant rr dr + → (stack1 : List (bt (Color ∧ A))) → stackInvariant key tr to stack1 + → rotatedTree tr rot + → {c : Color} → replacedTree key ⟪ c , value ⟫ (child-replaced key rot) rr + → length stack1 < length stack → t ) + → (exit : {k1 d1 : ℕ} {c1 : Color} → (rot repl : bt (Color ∧ A) ) + → {d : ℕ} → RBtreeInvariant repl d + → (ri : rotatedTree orig rot ) → {c : Color} → replacedTree key ⟪ c , value ⟫ rot repl → t ) → t insertCase5 {n} {m} {A} {t} key value orig tree repl si ri next exit = ? where insertCase51 : (key1 : ℕ) (si : ParentGrand ? ? ? ) → t insertCase51 = ? + rotateRight : ? + rotateRight = ? + rotateLeft : ? + rotateLeft = ? + -- if we have replacedNode on RBTree, we have RBtreeInvariant @@ -672,7 +678,7 @@ → {d : ℕ} → RBtreeInvariant tree d → {dr : ℕ} → RBtreeInvariant repl dr → (stack : List (bt (Color ∧ A))) → (si : stackInvariant key tree orig stack ) → {c : Color} → replacedTree key ⟪ c , value ⟫ (child-replaced key tree) repl - → (next : {key2 d2 : ℕ} {c2 : Color} + → (next : {key2 d2 : ℕ} {c2 : Color} -- no rotating case → (to tr rr : bt (Color ∧ A)) → RBtreeInvariant orig d0 → {d : ℕ} → RBtreeInvariant tree d → {dr : ℕ} → RBtreeInvariant rr dr @@ -688,7 +694,7 @@ → (pg : ParentGrand tree parent grand ) → t insertCase2 tree parent grand stack si pg with color A parent ... | Black = ? -- tree stuctre is preserved - ... | Red = insertCase3 grand refl where + ... | Red = ? where -- insertCase3 grand refl where -- -- in some case, stack is poped and loop to replaceRBP -- it means, we have to create replacedTree