Mercurial > hg > Members > Moririn
diff hoareBinaryTree1.agda @ 763:799325a71422
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 06 May 2023 01:25:46 +0900 |
parents | 56de8e7dca7a |
children | 3b4e31a7ccfe |
line wrap: on
line diff
--- a/hoareBinaryTree1.agda Fri May 05 10:14:53 2023 +0900 +++ b/hoareBinaryTree1.agda Sat May 06 01:25:46 2023 +0900 @@ -797,13 +797,28 @@ insertCase1 with stackToPG tree orig stack si ... | case1 eq = exit rot repl rbir (subst (λ k → rotatedTree k rot) (stackCase1 si eq) roti) ri ... | case2 (case1 eq ) = ? where - insertCase12 : (orig : bt (Color ∧ A)) - → {stack : List (bt (Color ∧ A))} → (si : stackInvariant key tree orig stack ) - → stack ≡ tree ∷ orig ∷ [] → t - insertCase12 (node k1 ⟪ Red , v1 ⟫ t1 tree) (s-right x s-nil) refl = exit rot repl rbir ? ? - insertCase12 (node k1 ⟪ Black , v1 ⟫ t1 tree) (s-right x s-nil) refl = ? - insertCase12 (node k1 ⟪ Red , v1 ⟫ tree t1) (s-left x s-nil) refl = ? - insertCase12 (node k1 ⟪ Black , v1 ⟫ tree t1) (s-left x s-nil) refl = ? + insertCase12 : (to : bt (Color ∧ A)) → {d : ℕ} → RBtreeInvariant to d → to ≡ orig + → {stack : List (bt (Color ∧ A))} → (si : stackInvariant key tree to stack ) + → stack ≡ tree ∷ to ∷ [] → t + insertCase12 (node k1 ⟪ Red , v1 ⟫ leaf (node k2 ⟪ Black , v2 ⟫ t1 t2)) (rb-right-red x₁ ro) eq (s-right x s-nil) refl = ? + insertCase12 (node k1 ⟪ Red , v1 ⟫ (node k2 ⟪ Black , v2 ⟫ t1 t2) leaf) (rb-left-red x₁ ro) eq (s-right x s-nil) refl = ? + insertCase12 (node k1 ⟪ Red , v1 ⟫ (node k2 ⟪ Black , v2 ⟫ t1 t2) (node k3 ⟪ Black , v3 ⟫ t3 t4)) (rb-node-red x₁ x₂ ro ro₁) eq (s-right x s-nil) refl = exit (node k1 ⟪ Red , v1 ⟫ t1 rot) (node k1 ⟪ Black , v1 ⟫ ? ?) (rb-node-black ? ? ? ?) + (subst₂ (λ j k → rotatedTree j k ) eq ? (rr-right ? rr-node rr-node roti)) + (subst (λ k → replacedTree key ⟪ ? , value ⟫ ? ?) ? (r-right ? ri)) + -- k1 < key + -- ⟪ red , k1 ⟫ + -- t1 tree → rot → repl + insertCase12 (node k1 ⟪ Black , v1 ⟫ leaf leaf) (rb-single k1 v1) eq (s-right x s-nil) refl = ? + insertCase12 (node k1 ⟪ Black , v1 ⟫ leaf (node _ ⟪ _ , _ ⟫ _ _)) (rb-right-black x₁ ro) eq (s-right x s-nil) refl = ? + insertCase12 (node k1 ⟪ Black , v1 ⟫ (node _ ⟪ _ , _ ⟫ _ _) leaf) (rb-left-black x₁ ro) eq (s-right x s-nil) refl = ? + insertCase12 (node k1 ⟪ Black , v1 ⟫ (node _ ⟪ _ , _ ⟫ _ _) (node _ ⟪ _ , _ ⟫ _ _)) (rb-node-black x₁ x₂ ro ro₁) eq (s-right x s-nil) refl = ? + insertCase12 (node k1 ⟪ Red , v1 ⟫ leaf (node _ ⟪ Black , _ ⟫ _ _)) (rb-right-red x₁ ro) eq (s-left x s-nil) refl = ? + insertCase12 (node k1 ⟪ Red , v1 ⟫ (node _ ⟪ Black , _ ⟫ _ _) leaf) (rb-left-red x₁ ro) eq (s-left x s-nil) refl = ? + insertCase12 (node k1 ⟪ Red , v1 ⟫ (node _ ⟪ Black , _ ⟫ _ _) (node _ ⟪ Black , _ ⟫ _ _)) (rb-node-red x₁ x₂ ro ro₁) eq (s-left x s-nil) refl = ? + insertCase12 (node k1 ⟪ Black , v1 ⟫ leaf leaf) (rb-single k1 v1) eq (s-left x s-nil) refl = ? + insertCase12 (node k1 ⟪ Black , v1 ⟫ leaf (node _ ⟪ _ , _ ⟫ _ _)) (rb-right-black x₁ ro) eq (s-left x s-nil) refl = ? + insertCase12 (node k1 ⟪ Black , v1 ⟫ (node _ ⟪ _ , _ ⟫ _ _) leaf) (rb-left-black x₁ ro) eq (s-left x s-nil) refl = ? + insertCase12 (node k1 ⟪ Black , v1 ⟫ (node _ ⟪ _ , _ ⟫ _ _) (node _ ⟪ _ , _ ⟫ _ _)) (rb-node-black x₁ x₂ ro ro₁) eq (s-left x s-nil) refl = ? -- exit rot repl rbir ? ? ... | case2 (case2 pg) = insertCase2 tree (PG.parent pg) (PG.uncle pg) (PG.grand pg) stack si (PG.pg pg)