Mercurial > hg > Members > Moririn
diff RedBlackTree.agda @ 523:8fbc3ef749b6
separate Agda
author | ryokka |
---|---|
date | Fri, 05 Jan 2018 16:39:43 +0900 |
parents | src/parallel_execution/RedBlackTree.agda@f63a9a081b61 |
children | 0696b9846415 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/RedBlackTree.agda Fri Jan 05 16:39:43 2018 +0900 @@ -0,0 +1,145 @@ +module RedBlackTree where + +open import stack +open import Level + +record TreeMethods {n m : Level } {a : Set n } {t : Set m } (treeImpl : Set n ) : Set (m Level.⊔ n) where + field + putImpl : treeImpl -> a -> (treeImpl -> t) -> t + getImpl : treeImpl -> (treeImpl -> Maybe a -> t) -> t +open TreeMethods + +record Tree {n m : Level } {a : Set n } {t : Set m } (treeImpl : Set n ) : Set (m Level.⊔ n) where + field + tree : treeImpl + treeMethods : TreeMethods {n} {m} {a} {t} treeImpl + putTree : a -> (Tree treeImpl -> t) -> t + putTree d next = putImpl (treeMethods ) tree d (\t1 -> next (record {tree = t1 ; treeMethods = treeMethods} )) + getTree : (Tree treeImpl -> Maybe a -> t) -> t + getTree next = getImpl (treeMethods ) tree (\t1 d -> next (record {tree = t1 ; treeMethods = treeMethods} ) d ) + +open Tree + +data Color {n : Level } : Set n where + Red : Color + Black : Color + +data CompareResult {n : Level } : Set n where + LT : CompareResult + GT : CompareResult + EQ : CompareResult + +record Node {n : Level } (a k : Set n) : Set n where + inductive + field + key : k + value : a + right : Maybe (Node a k) + left : Maybe (Node a k) + color : Color {n} +open Node + +record RedBlackTree {n m : Level } {t : Set m} (a k si : Set n) : Set (m Level.⊔ n) where + field + root : Maybe (Node a k) + nodeStack : Stack {n} {m} (Node a k) {t} si + compare : k -> k -> CompareResult {n} + +open RedBlackTree + +open Stack + +-- +-- put new node at parent node, and rebuild tree to the top +-- +{-# TERMINATING #-} -- https://agda.readthedocs.io/en/v2.5.3/language/termination-checking.html +replaceNode : {n m : Level } {t : Set m } {a k si : Set n} -> RedBlackTree {n} {m} {t} a k si -> Stack (Node a k) si -> Node a k -> Node a k -> (RedBlackTree {n} {m} {t} a k si -> t) -> t +replaceNode {n} {m} {t} {a} {k} {si} tree s parent n0 next = popStack s ( + \s grandParent -> replaceNode1 s grandParent ( compare tree (key parent) (key n0) ) ) + where + replaceNode1 : Stack (Node a k) si -> Maybe ( Node a k ) -> CompareResult -> t + replaceNode1 s Nothing LT = next ( record tree { root = Just ( record parent { left = Just n0 ; color = Black } ) } ) + replaceNode1 s Nothing GT = next ( record tree { root = Just ( record parent { right = Just n0 ; color = Black } ) } ) + replaceNode1 s Nothing EQ = next ( record tree { root = Just ( record parent { right = Just n0 ; color = Black } ) } ) + replaceNode1 s (Just grandParent) result with result + ... | LT = replaceNode tree s grandParent ( record parent { left = Just n0 } ) next + ... | GT = replaceNode tree s grandParent ( record parent { right = Just n0 } ) next + ... | EQ = next tree + +rotateRight : {n m : Level } {t : Set m } {a k si : Set n} -> RedBlackTree {n} {m} {t} a k si -> Stack (Node a k) {t} si -> Node a k -> Node a k -> Node a k -> (RedBlackTree {n} {m} {t} a k si -> t) -> t +rotateRight {n} {m} {t} {a} {k} {si} tree s n0 parent grandParent next = {!!} + +rotateLeft : {n m : Level } {t : Set m } {a k si : Set n} -> RedBlackTree {n} {m} {t} a k si -> Stack (Node a k) {t} si -> Node a k -> Node a k -> Node a k -> (RedBlackTree {n} {m} {t} a k si -> t) -> t +rotateLeft {n} {m} {t} {a} {k} {si} tree s n0 parent grandParent next = {!!} + +insertCase5 : {n m : Level } {t : Set m } {a k si : Set n} -> RedBlackTree {n} {m} {t} a k si -> Stack (Node a k) {t} si -> Node a k -> Node a k -> Node a k -> (RedBlackTree {n} {m} {t} a k si -> t) -> t +insertCase5 {n} {m} {t} {a} {k} {si} tree s n0 parent grandParent next = {!!} + +insertCase4 : {n m : Level } {t : Set m } {a k si : Set n} -> RedBlackTree {n} {m} {t} a k si -> Stack (Node a k) {t} si -> Node a k -> Node a k -> Node a k -> (RedBlackTree {n} {m} {t} a k si -> t) -> t +insertCase4 {n} {m} {t} {a} {k} {si} tree s n0 parent grandParent next = {!!} + +{-# TERMINATING #-} +insertNode : {n m : Level } {t : Set m } {a k si : Set n} -> RedBlackTree {n} {m} {t} a k si -> Stack (Node a k) {t} si -> Node a k -> (RedBlackTree {n} {m} {t} a k si -> t) -> t +insertNode {n} {m} {t} {a} {k} {si} tree s n0 next = get2Stack s (\ s d1 d2 -> insertCase1 s n0 d1 d2 ) + where + insertCase1 : Stack (Node a k) si -> Node a k -> Maybe (Node a k) -> Maybe (Node a k) -> t -- placed here to allow mutual recursion + -- http://agda.readthedocs.io/en/v2.5.2/language/mutual-recursion.html + insertCase3 : Stack (Node a k) si -> Node a k -> Node a k -> Node a k -> t + insertCase3 s n0 parent grandParent with left grandParent | right grandParent + ... | Nothing | Nothing = insertCase4 tree s n0 parent grandParent next + ... | Nothing | Just uncle = insertCase4 tree s n0 parent grandParent next + ... | Just uncle | _ with compare tree ( key uncle ) ( key parent ) + ... | EQ = insertCase4 tree s n0 parent grandParent next + ... | _ with color uncle + ... | Red = pop2Stack s ( \s p0 p1 -> insertCase1 s ( + record grandParent { color = Red ; left = Just ( record parent { color = Black ; left = Just n0 } ) ; right = Just ( record uncle { color = Black } ) }) p0 p1 ) + ... | Black = insertCase4 tree s n0 parent grandParent next + insertCase2 : Stack (Node a k) si -> Node a k -> Node a k -> Node a k -> t + insertCase2 s n0 parent grandParent with color parent + ... | Black = replaceNode tree s grandParent n0 next + ... | Red = insertCase3 s n0 parent grandParent + insertCase1 s n0 Nothing Nothing = next tree + insertCase1 s n0 Nothing (Just grandParent) = replaceNode tree s grandParent n0 next + insertCase1 s n0 (Just grandParent) Nothing = replaceNode tree s grandParent n0 next + insertCase1 s n0 (Just parent) (Just grandParent) = insertCase2 s n0 parent grandParent + where + +findNode : {n m : Level } {a k si : Set n} {t : Set m} -> RedBlackTree {n} {m} {t} a k si -> Stack (Node a k) si -> (Node a k) -> (Node a k) -> (RedBlackTree {n} {m} {t} a k si -> Stack (Node a k) si -> Node a k -> t) -> t +findNode {n} {m} {a} {k} {si} {t} tree s n0 n1 next = pushStack s n1 (\ s -> findNode1 s n1) + where + findNode2 : Stack (Node a k) si -> (Maybe (Node a k)) -> t + findNode2 s Nothing = next tree s n0 + findNode2 s (Just n) = findNode tree s n0 n next + findNode1 : Stack (Node a k) si -> (Node a k) -> t + findNode1 s n1 with (compare tree (key n0) (key n1)) + ... | EQ = next tree s n0 + ... | GT = findNode2 s (right n1) + ... | LT = findNode2 s (left n1) + + +leafNode : {n : Level } {a k : Set n} -> k -> a -> Node a k +leafNode k1 value = record { + key = k1 ; + value = value ; + right = Nothing ; + left = Nothing ; + color = Black + } + +putRedBlackTree : {n m : Level } {a k si : Set n} {t : Set m} -> RedBlackTree {n} {m} {t} a k si -> k -> a -> (RedBlackTree {n} {m} {t} a k si -> t) -> t +putRedBlackTree {n} {m} {a} {k} {si} {t} tree k1 value next with (root tree) +... | Nothing = next (record tree {root = Just (leafNode k1 value) }) +... | Just n2 = findNode tree (nodeStack tree) (leafNode k1 value) n2 (\ tree1 s n1 -> insertNode tree1 s n1 next) + +getRedBlackTree : {n m : Level } {a k si : Set n} {t : Set m} -> RedBlackTree {n} {m} {t} a k si -> k -> (RedBlackTree {n} {m} {t} a k si -> (Maybe (Node a k)) -> t) -> t +getRedBlackTree {_} {_} {a} {k} {_} {t} tree k1 cs = checkNode (root tree) + where + checkNode : Maybe (Node a k) -> t + checkNode Nothing = cs tree Nothing + checkNode (Just n) = search n + where + search : Node a k -> t + search n with compare tree k1 (key n) + search n | LT = checkNode (left n) + search n | GT = checkNode (right n) + search n | EQ = cs tree (Just n)