diff stack.agda @ 523:8fbc3ef749b6

separate Agda
author ryokka
date Fri, 05 Jan 2018 16:39:43 +0900
parents src/parallel_execution/stack.agda@54ff7a97aec1
children f6060e1bf900
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/stack.agda	Fri Jan 05 16:39:43 2018 +0900
@@ -0,0 +1,255 @@
+open import Level renaming (suc to succ ; zero to Zero )
+module stack  where
+
+open import Relation.Binary.PropositionalEquality
+open import Relation.Binary.Core
+open import Data.Nat
+
+ex : 1 + 2 ≡ 3
+ex = refl
+
+data Bool {n : Level } : Set n where
+  True  : Bool
+  False : Bool
+
+record _∧_ {n : Level } (a : Set n) (b : Set n): Set n where
+  field
+    pi1 : a
+    pi2 : b
+
+data Maybe {n : Level } (a : Set n) : Set n where
+  Nothing : Maybe a
+  Just    : a -> Maybe a
+
+record StackMethods {n m : Level } (a : Set n ) {t : Set m }(stackImpl : Set n ) : Set (m Level.⊔ n) where
+  field
+    push : stackImpl -> a -> (stackImpl -> t) -> t
+    pop  : stackImpl -> (stackImpl -> Maybe a -> t) -> t
+    pop2 : stackImpl -> (stackImpl -> Maybe a -> Maybe a -> t) -> t
+    get  : stackImpl -> (stackImpl -> Maybe a -> t) -> t
+    get2 : stackImpl -> (stackImpl -> Maybe a -> Maybe a -> t) -> t
+open StackMethods
+
+record Stack {n m : Level } (a : Set n ) {t : Set m } (si : Set n ) : Set (m Level.⊔ n) where
+  field
+    stack : si
+    stackMethods : StackMethods {n} {m} a {t} si
+  pushStack :  a -> (Stack a si -> t) -> t
+  pushStack d next = push (stackMethods ) (stack ) d (\s1 -> next (record {stack = s1 ; stackMethods = stackMethods } ))
+  popStack : (Stack a si -> Maybe a  -> t) -> t
+  popStack next = pop (stackMethods ) (stack ) (\s1 d1 -> next (record {stack = s1 ; stackMethods = stackMethods }) d1 )
+  pop2Stack :  (Stack a si -> Maybe a -> Maybe a -> t) -> t
+  pop2Stack next = pop2 (stackMethods ) (stack ) (\s1 d1 d2 -> next (record {stack = s1 ; stackMethods = stackMethods }) d1 d2)
+  getStack :  (Stack a si -> Maybe a  -> t) -> t
+  getStack next = get (stackMethods ) (stack ) (\s1 d1 -> next (record {stack = s1 ; stackMethods = stackMethods }) d1 )
+  get2Stack :  (Stack a si -> Maybe a -> Maybe a -> t) -> t
+  get2Stack next = get2 (stackMethods ) (stack ) (\s1 d1 d2 -> next (record {stack = s1 ; stackMethods = stackMethods }) d1 d2)
+
+open Stack
+
+data Element {n : Level } (a : Set n) : Set n where
+  cons : a -> Maybe (Element a) -> Element a
+
+datum : {n : Level } {a : Set n} -> Element a -> a
+datum (cons a _) = a
+
+next : {n : Level } {a : Set n} -> Element a -> Maybe (Element a)
+next (cons _ n) = n
+
+
+{-
+-- cannot define recrusive record definition. so use linked list with maybe.
+record Element {l : Level} (a : Set n l) : Set n (suc l) where
+  field
+    datum : a  -- `data` is reserved by Agda.
+    next : Maybe (Element a)
+-}
+
+
+
+record SingleLinkedStack {n : Level } (a : Set n) : Set n where
+  field
+    top : Maybe (Element a)
+open SingleLinkedStack
+
+pushSingleLinkedStack : {n m : Level } {t : Set m } {Data : Set n} -> SingleLinkedStack Data -> Data -> (Code : SingleLinkedStack Data -> t) -> t
+pushSingleLinkedStack stack datum next = next stack1
+  where
+    element = cons datum (top stack)
+    stack1  = record {top = Just element}
+
+
+popSingleLinkedStack : {n m : Level } {t : Set m } {a  : Set n} -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> t) -> t
+popSingleLinkedStack stack cs with (top stack)
+...                                | Nothing = cs stack  Nothing
+...                                | Just d  = cs stack1 (Just data1)
+  where
+    data1  = datum d
+    stack1 = record { top = (next d) }
+
+pop2SingleLinkedStack : {n m : Level } {t : Set m } {a  : Set n} -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> (Maybe a) -> t) -> t
+pop2SingleLinkedStack {n} {m} {t} {a} stack cs with (top stack)
+...                                | Nothing = cs stack Nothing Nothing
+...                                | Just d = pop2SingleLinkedStack' {n} {m} stack cs
+  where
+    pop2SingleLinkedStack' : {n m : Level } {t : Set m }  -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> (Maybe a) -> t) -> t
+    pop2SingleLinkedStack' stack cs with (next d)
+    ...              | Nothing = cs stack Nothing Nothing
+    ...              | Just d1 = cs (record {top = (next d1)}) (Just (datum d)) (Just (datum d1))
+    
+
+getSingleLinkedStack : {n m : Level } {t : Set m } {a  : Set n} -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> t) -> t
+getSingleLinkedStack stack cs with (top stack)
+...                                | Nothing = cs stack  Nothing
+...                                | Just d  = cs stack (Just data1)
+  where
+    data1  = datum d
+
+get2SingleLinkedStack : {n m : Level } {t : Set m } {a  : Set n} -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> (Maybe a) -> t) -> t
+get2SingleLinkedStack {n} {m} {t} {a} stack cs with (top stack)
+...                                | Nothing = cs stack Nothing Nothing
+...                                | Just d = get2SingleLinkedStack' {n} {m} stack cs
+  where
+    get2SingleLinkedStack' : {n m : Level} {t : Set m } -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> (Maybe a) -> t) -> t
+    get2SingleLinkedStack' stack cs with (next d)
+    ...              | Nothing = cs stack Nothing Nothing
+    ...              | Just d1 = cs stack (Just (datum d)) (Just (datum d1))
+
+
+
+emptySingleLinkedStack : {n : Level } {a : Set n} -> SingleLinkedStack a
+emptySingleLinkedStack = record {top = Nothing}
+
+-----
+-- Basic stack implementations are specifications of a Stack
+--
+singleLinkedStackSpec : {n m : Level } {t : Set m } {a : Set n} -> StackMethods {n} {m} a {t} (SingleLinkedStack a)
+singleLinkedStackSpec = record {
+                                   push = pushSingleLinkedStack
+                                 ; pop  = popSingleLinkedStack
+                                 ; pop2 = pop2SingleLinkedStack
+                                 ; get  = getSingleLinkedStack
+                                 ; get2 = get2SingleLinkedStack
+                           }
+
+createSingleLinkedStack : {n m : Level } {t : Set m } {a : Set n} -> Stack {n} {m} a {t} (SingleLinkedStack a)
+createSingleLinkedStack = record {
+                             stack = emptySingleLinkedStack ;
+                             stackMethods = singleLinkedStackSpec 
+                           }
+
+----
+--
+-- proof of properties ( concrete cases )
+--
+
+test01 : {n : Level } {a : Set n} -> SingleLinkedStack a -> Maybe a -> Bool {n}
+test01 stack _ with (top stack)
+...                  | (Just _) = True
+...                  | Nothing  = False
+
+
+test02 : {n : Level } {a : Set n} -> SingleLinkedStack a -> Bool
+test02 stack = popSingleLinkedStack stack test01
+
+test03 : {n : Level } {a : Set n} -> a ->  Bool
+test03 v = pushSingleLinkedStack emptySingleLinkedStack v test02
+
+-- after a push and a pop, the stack is empty
+lemma : {n : Level} {A : Set n} {a : A} -> test03 a ≡ False
+lemma = refl
+
+testStack01 : {n m : Level } {a : Set n} -> a -> Bool {m}
+testStack01 v = pushStack createSingleLinkedStack v (
+   \s -> popStack s (\s1 d1 -> True))
+
+-- after push 1 and 2, pop2 get 1 and 2
+
+testStack02 : {m : Level } ->  ( Stack  ℕ (SingleLinkedStack ℕ) -> Bool {m} ) -> Bool {m}
+testStack02 cs = pushStack createSingleLinkedStack 1 (
+   \s -> pushStack s 2 cs)
+
+
+testStack031 : (d1 d2 : ℕ ) -> Bool {Zero}
+testStack031 2 1 = True
+testStack031 _ _ = False
+
+testStack032 : (d1 d2 : Maybe ℕ) -> Bool {Zero}
+testStack032  (Just d1) (Just d2) = testStack031 d1 d2
+testStack032  _ _ = False
+
+testStack03 : {m : Level } -> Stack  ℕ (SingleLinkedStack ℕ) -> ((Maybe ℕ) -> (Maybe ℕ) -> Bool {m} ) -> Bool {m}
+testStack03 s cs = pop2Stack s (
+   \s d1 d2 -> cs d1 d2 )
+
+testStack04 : Bool
+testStack04 = testStack02 (\s -> testStack03 s testStack032)
+
+testStack05 : testStack04 ≡ True
+testStack05 = refl
+
+------
+--
+-- proof of properties with indefinite state of stack
+--
+-- this should be proved by properties of the stack inteface, not only by the implementation,
+--    and the implementation have to provides the properties.
+--
+--    we cannot write "s ≡ s3", since level of the Set does not fit , but use stack s ≡ stack s3 is ok.
+--    anyway some implementations may result s != s3
+--  
+
+stackInSomeState : {l m : Level } {D : Set l} {t : Set m } (s : SingleLinkedStack D ) -> Stack {l} {m} D {t}  ( SingleLinkedStack  D )
+stackInSomeState s =  record { stack = s ; stackMethods = singleLinkedStackSpec }
+
+push->push->pop2 : {l : Level } {D : Set l} (x y : D ) (s : SingleLinkedStack D ) ->
+    pushStack ( stackInSomeState s )  x ( \s1 -> pushStack s1 y ( \s2 -> pop2Stack s2 ( \s3 y1 x1 -> (Just x ≡ x1 ) ∧ (Just y ≡ y1 ) ) ))
+push->push->pop2 {l} {D} x y s = record { pi1 = refl ; pi2 = refl }
+
+
+id : {n : Level} {A : Set n} -> A -> A
+id a = a
+
+-- push a, n times
+
+n-push : {n : Level} {A : Set n} {a : A} -> ℕ -> SingleLinkedStack A -> SingleLinkedStack A
+n-push zero s            = s
+n-push {l} {A} {a} (suc n) s = pushSingleLinkedStack (n-push {l} {A} {a} n s) a (\s -> s ) 
+
+n-pop :  {n : Level}{A : Set n} {a : A} -> ℕ -> SingleLinkedStack A -> SingleLinkedStack A
+n-pop zero    s         = s
+n-pop  {_} {A} {a} (suc n) s = popSingleLinkedStack (n-pop {_} {A} {a} n s) (\s _ -> s )
+
+open ≡-Reasoning
+
+push-pop-equiv : {n : Level} {A : Set n} {a : A} (s : SingleLinkedStack A) -> (popSingleLinkedStack (pushSingleLinkedStack s a (\s -> s)) (\s _ -> s) ) ≡ s
+push-pop-equiv s = refl
+
+push-and-n-pop : {n : Level} {A : Set n} {a : A} (n : ℕ) (s : SingleLinkedStack A) -> n-pop {_} {A} {a} (suc n) (pushSingleLinkedStack s a id) ≡ n-pop {_} {A} {a} n s
+push-and-n-pop zero s            = refl
+push-and-n-pop {_} {A} {a} (suc n) s = begin
+   n-pop {_} {A} {a} (suc (suc n)) (pushSingleLinkedStack s a id)
+  ≡⟨ refl ⟩
+   popSingleLinkedStack (n-pop {_} {A} {a} (suc n) (pushSingleLinkedStack s a id)) (\s _ -> s)
+  ≡⟨ cong (\s -> popSingleLinkedStack s (\s _ -> s )) (push-and-n-pop n s) ⟩ 
+   popSingleLinkedStack (n-pop {_} {A} {a} n s) (\s _ -> s)
+  ≡⟨ refl ⟩
+    n-pop {_} {A} {a} (suc n) s
+  ∎
+  
+
+n-push-pop-equiv : {n : Level} {A : Set n} {a : A} (n : ℕ) (s : SingleLinkedStack A) -> (n-pop {_} {A} {a} n (n-push {_} {A} {a} n s)) ≡ s
+n-push-pop-equiv zero s            = refl
+n-push-pop-equiv {_} {A} {a} (suc n) s = begin
+    n-pop {_} {A} {a} (suc n) (n-push (suc n) s)
+  ≡⟨ refl ⟩
+    n-pop {_} {A} {a} (suc n) (pushSingleLinkedStack (n-push n s) a (\s -> s))
+  ≡⟨ push-and-n-pop n (n-push n s)  ⟩
+    n-pop {_} {A} {a} n (n-push n s)
+  ≡⟨ n-push-pop-equiv n s ⟩
+    s
+  ∎
+
+
+n-push-pop-equiv-empty : {n : Level} {A : Set n} {a : A} -> (n : ℕ) -> n-pop {_} {A} {a} n (n-push {_} {A} {a} n emptySingleLinkedStack)  ≡ emptySingleLinkedStack
+n-push-pop-equiv-empty n = n-push-pop-equiv n emptySingleLinkedStack