diff redBlackTreeTest.agda @ 560:f4779958ff6a

compareTri5 done
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Thu, 29 Mar 2018 20:23:51 +0900
parents cca54e32d7ac
children 1bbbd787472e
line wrap: on
line diff
--- a/redBlackTreeTest.agda	Thu Mar 29 19:38:49 2018 +0900
+++ b/redBlackTreeTest.agda	Thu Mar 29 20:23:51 2018 +0900
@@ -154,10 +154,9 @@
 compareTri21 : (n m : ℕ) -> suc n ≤′ suc m ->  n ≤′ m
 compareTri21 _ _  ≤′-refl = ≤′-refl
 compareTri21 n (suc m) ( ≤′-step p ) = ≤′-step (compareTri21 _ _ p)
-compareTri21 zero zero _ = ≤′-refl
-compareTri21 (suc zero) zero _ = {!!}
-compareTri21 (suc (suc n)) zero _ = {!!}
-
+compareTri21 zero zero ( ≤′-step p ) = ≤′-refl
+compareTri21 (suc n1) zero = {!!}
+   
 
 compareTri3 : ∀ m {n} → ¬ m ≡ suc (m + n)
 compareTri3 zero    ()
@@ -168,14 +167,12 @@
 ... | yes refl  = λ x y → x refl
 ... | no  p  = λ x y → p ( cong pred y )
 
-compareTri5 : ∀ m {n} → ¬ m <′ n →  ¬ suc m <′ suc n
-compareTri5  m {n} with (is≤′ m n)
-... | yes p = {!!}
-... | no p = {!!}
-
 compareTri6 : ∀ m {n} → ¬ m ≤′ n →  ¬ suc m ≤′ suc n
 compareTri6  m {n} = λ x y → x (compareTri21 _ _ y)
 
+compareTri5 : ∀ m {n} → ¬ m <′ n →  ¬ suc m <′ suc n
+compareTri5  m {n}  = compareTri6 (suc m)
+
 compareTri :  Trichotomous  _≡_ _<′_
 compareTri zero zero = tri≈ ( λ ()) refl ( λ ())
 compareTri zero (suc n) = tri< ( compareTri1 n )  ( λ ()) ( λ ())