Mercurial > hg > Members > Moririn
view redBlackTreeTest.agda @ 550:2476f7123dc3
root = Nothing case passed on putTest1
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 17 Jan 2018 17:31:41 +0900 |
parents | bc3208d510cd |
children | 8bc39f95c961 |
line wrap: on
line source
module redBlackTreeTest where open import RedBlackTree open import stack open import Level hiding (zero) open import Data.Nat open Tree open Node open RedBlackTree.RedBlackTree open Stack -- tests putTree1 : {n m : Level } {a k : Set n} {t : Set m} -> RedBlackTree {n} {m} {t} a k -> k -> a -> (RedBlackTree {n} {m} {t} a k -> t) -> t putTree1 {n} {m} {a} {k} {t} tree k1 value next with (root tree) ... | Nothing = next (record tree {root = Just (leafNode k1 value) }) ... | Just n2 = clearSingleLinkedStack (nodeStack tree) (\ s -> findNode tree s (leafNode k1 value) n2 (\ tree1 s n1 -> replaceNode tree1 s n1 next)) open import Relation.Binary.PropositionalEquality open import Relation.Binary.Core open import Function check1 : {m : Level } (n : Maybe (Node ℕ ℕ)) -> ℕ -> Bool {m} check1 Nothing _ = False check1 (Just n) x with Data.Nat.compare (value n) x ... | equal _ = True ... | _ = False check2 : {m : Level } (n : Maybe (Node ℕ ℕ)) -> ℕ -> Bool {m} check2 Nothing _ = False check2 (Just n) x with compare2 (value n) x ... | EQ = True ... | _ = False test1 : putTree1 {_} {_} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ ℕ {Set Level.zero} ) 1 1 ( \t -> getRedBlackTree t 1 ( \t x -> check2 x 1 ≡ True )) test1 = refl test2 : putTree1 {_} {_} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ ℕ {Set Level.zero} ) 1 1 ( \t -> putTree1 t 2 2 ( \t -> getRedBlackTree t 1 ( \t x -> check2 x 1 ≡ True ))) test2 = refl open ≡-Reasoning test3 : putTree1 {_} {_} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ ℕ {Set Level.zero}) 1 1 $ \t -> putTree1 t 2 2 $ \t -> putTree1 t 3 3 $ \t -> putTree1 t 4 4 $ \t -> getRedBlackTree t 1 $ \t x -> check2 x 1 ≡ True test3 = begin check2 (Just (record {key = 1 ; value = 1 ; color = Black ; left = Nothing ; right = Just (leafNode 2 2)})) 1 ≡⟨ refl ⟩ True ∎ test31 = putTree1 {_} {_} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ ℕ ) 1 1 $ \t -> putTree1 t 2 2 $ \t -> putTree1 t 3 3 $ \t -> putTree1 t 4 4 $ \t -> getRedBlackTree t 4 $ \t x -> x -- test5 : Maybe (Node ℕ ℕ) test5 = putTree1 {_} {_} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ ℕ ) 4 4 $ \t -> putTree1 t 6 6 $ \t0 -> clearSingleLinkedStack (nodeStack t0) $ \s -> findNode1 t0 s (leafNode 3 3) ( root t0 ) $ \t1 s n1 -> replaceNode t1 s n1 $ \t -> getRedBlackTree t 3 -- $ \t x -> SingleLinkedStack.top (stack s) -- $ \t x -> n1 $ \t x -> root t where findNode1 : {n m : Level } {a k : Set n} {t : Set m} -> RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node a k) -> (Node a k) -> (Maybe (Node a k)) -> (RedBlackTree {n} {m} {t} a k -> SingleLinkedStack (Node a k) -> Node a k -> t) -> t findNode1 t s n1 Nothing next = next t s n1 findNode1 t s n1 ( Just n2 ) next = findNode t s n1 n2 next -- test51 : putTree1 {_} {_} {ℕ} {ℕ} {_} {Maybe (Node ℕ ℕ)} (createEmptyRedBlackTreeℕ ℕ {Set Level.zero} ) 1 1 $ \t -> -- putTree1 t 2 2 $ \t -> putTree1 t 3 3 $ \t -> root t ≡ Just (record { key = 1; value = 1; left = Just (record { key = 2 ; value = 2 } ); right = Nothing} ) -- test51 = refl test6 : Maybe (Node ℕ ℕ) test6 = root (createEmptyRedBlackTreeℕ {_} ℕ {Maybe (Node ℕ ℕ)}) test7 : Maybe (Node ℕ ℕ) test7 = clearSingleLinkedStack (nodeStack tree2) (\ s -> replaceNode tree2 s n2 (\ t -> root t)) where tree2 = createEmptyRedBlackTreeℕ {_} ℕ {Maybe (Node ℕ ℕ)} k1 = 1 n2 = leafNode 0 0 value1 = 1 test8 : Maybe (Node ℕ ℕ) test8 = putTree1 {_} {_} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ ℕ) 1 1 $ \t -> putTree1 t 2 2 (\ t -> root t) test9 : putRedBlackTree {_} {_} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ ℕ {Set Level.zero} ) 1 1 ( \t -> getRedBlackTree t 1 ( \t x -> check2 x 1 ≡ True )) test9 = refl test10 : putRedBlackTree {_} {_} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ ℕ {Set Level.zero} ) 1 1 ( \t -> putRedBlackTree t 2 2 ( \t -> getRedBlackTree t 1 ( \t x -> check2 x 1 ≡ True ))) test10 = refl test11 = putRedBlackTree {_} {_} {ℕ} {ℕ} (createEmptyRedBlackTreeℕ ℕ) 1 1 $ \t -> putRedBlackTree t 2 2 $ \t -> putRedBlackTree t 3 3 $ \t -> getRedBlackTree t 2 $ \t x -> root t redBlackInSomeState :{ m : Level } (a : Set Level.zero) (n : Maybe (Node a ℕ)) {t : Set m} -> RedBlackTree {Level.zero} {m} {t} a ℕ redBlackInSomeState {m} a n {t} = record { root = n ; nodeStack = emptySingleLinkedStack ; compare = compare2 } -- compare2 : (x y : ℕ ) -> CompareResult {Level.zero} -- compare2 zero zero = EQ -- compare2 (suc _) zero = GT -- compare2 zero (suc _) = LT -- compare2 (suc x) (suc y) = compare2 x y putTest1Lemma2 : (k : ℕ) -> compare2 k k ≡ EQ putTest1Lemma2 zero = refl putTest1Lemma2 (suc k) = putTest1Lemma2 k putTest1Lemma1 : (x y : ℕ) -> compareℕ x y ≡ compare2 x y putTest1Lemma1 zero zero = refl putTest1Lemma1 (suc m) zero = refl putTest1Lemma1 zero (suc n) = refl putTest1Lemma1 (suc m) (suc n) with Data.Nat.compare m n putTest1Lemma1 (suc .m) (suc .(Data.Nat.suc m + k)) | less m k = lemma1 m where lemma1 : (m : ℕ) -> LT ≡ compare2 m (ℕ.suc (m + k)) lemma1 zero = refl lemma1 (suc y) = lemma1 y putTest1Lemma1 (suc .m) (suc .m) | equal m = lemma1 m where lemma1 : (m : ℕ) -> EQ ≡ compare2 m m lemma1 zero = refl lemma1 (suc y) = lemma1 y putTest1Lemma1 (suc .(Data.Nat.suc m + k)) (suc .m) | greater m k = lemma1 m where lemma1 : (m : ℕ) -> GT ≡ compare2 (ℕ.suc (m + k)) m lemma1 zero = refl lemma1 (suc y) = lemma1 y putTest1Lemma3 : (k : ℕ) -> compareℕ k k ≡ EQ putTest1Lemma3 k = trans (putTest1Lemma1 k k) ( putTest1Lemma2 k ) compareLemma1 : (x y : ℕ) -> compare2 x y ≡ EQ -> x ≡ y compareLemma1 zero zero refl = refl compareLemma1 zero (suc _) () compareLemma1 (suc _) zero () compareLemma1 (suc x) (suc y) eq = cong ( \z -> ℕ.suc z ) ( compareLemma1 x y ( trans lemma2 eq ) ) where lemma2 : compare2 (ℕ.suc x) (ℕ.suc y) ≡ compare2 x y lemma2 = refl putTest1 :{ m : Level } (n : Maybe (Node ℕ ℕ)) -> (k : ℕ) (x : ℕ) -> putTree1 {_} {_} {ℕ} {ℕ} (redBlackInSomeState {_} ℕ n {Set Level.zero}) k x (\ t -> getRedBlackTree t k (\ t x1 -> check2 x1 x ≡ True)) putTest1 n k x with n ... | Just n1 = {!!} ... | Nothing = lemma1 where lemma1 : getRedBlackTree {_} {_} {ℕ} {ℕ} {Set Level.zero} ( record { root = Just ( record { key = k ; value = x ; right = Nothing ; left = Nothing ; color = Red } ) ; nodeStack = record { top = Nothing } ; compare = λ x₁ y → compare2 x₁ y } ) k ( \ t x1 -> check2 x1 x ≡ True) lemma1 with compare2 k k | putTest1Lemma2 k ... | EQ | refl with compare2 x x | putTest1Lemma2 x ... | EQ | refl = refl