view hoareBinaryTree1.agda @ 765:292aaf8e3b0f

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sat, 06 May 2023 19:21:16 +0900
parents 3b4e31a7ccfe
children bc9063c6fef3
line wrap: on
line source

module hoareBinaryTree1 where

open import Level hiding (suc ; zero ; _⊔_ )

open import Data.Nat hiding (compare)
open import Data.Nat.Properties as NatProp
open import Data.Maybe
-- open import Data.Maybe.Properties
open import Data.Empty
open import Data.List
open import Data.Product

open import Function as F hiding (const)

open import Relation.Binary
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary
open import logic


--
--
--  no children , having left node , having right node , having both
--
data bt {n : Level} (A : Set n) : Set n where
  leaf : bt A
  node :  (key : ℕ) → (value : A) →
    (left : bt A ) → (right : bt A ) → bt A

node-key : {n : Level} {A : Set n} → bt A → Maybe ℕ
node-key (node key _ _ _) = just key
node-key _ = nothing

node-value : {n : Level} {A : Set n} → bt A → Maybe A
node-value (node _ value _ _) = just value
node-value _ = nothing

bt-depth : {n : Level} {A : Set n} → (tree : bt A ) → ℕ
bt-depth leaf = 0
bt-depth (node key value t t₁) = suc (bt-depth t  ⊔ bt-depth t₁ )

open import Data.Unit hiding ( _≟_ ;  _≤?_ ; _≤_)

data treeInvariant {n : Level} {A : Set n} : (tree : bt A) → Set n where
    t-leaf : treeInvariant leaf 
    t-single : (key : ℕ) → (value : A) →  treeInvariant (node key value leaf leaf) 
    t-right : {key key₁ : ℕ} → {value value₁ : A} → {t₁ t₂ : bt A} → key < key₁ → treeInvariant (node key₁ value₁ t₁ t₂)
       → treeInvariant (node key value leaf (node key₁ value₁ t₁ t₂)) 
    t-left  : {key key₁ : ℕ} → {value value₁ : A} → {t₁ t₂ : bt A} → key < key₁ → treeInvariant (node key value t₁ t₂)
       → treeInvariant (node key₁ value₁ (node key value t₁ t₂) leaf ) 
    t-node  : {key key₁ key₂ : ℕ} → {value value₁ value₂ : A} → {t₁ t₂ t₃ t₄ : bt A} → key < key₁ → key₁ < key₂
       → treeInvariant (node key value t₁ t₂) 
       → treeInvariant (node key₂ value₂ t₃ t₄)
       → treeInvariant (node key₁ value₁ (node key value t₁ t₂) (node key₂ value₂ t₃ t₄)) 

--
--  stack always contains original top at end (path of the tree)
--
data stackInvariant {n : Level} {A : Set n}  (key : ℕ) : (top orig : bt A) → (stack  : List (bt A)) → Set n where
    s-nil :  {tree0 : bt A} → stackInvariant key tree0 tree0 (tree0 ∷ [])
    s-right :  {tree tree0 tree₁ : bt A} → {key₁ : ℕ } → {v1 : A } → {st : List (bt A)} 
        → key₁ < key  →  stackInvariant key (node key₁ v1 tree₁ tree) tree0 st → stackInvariant key tree tree0 (tree ∷ st)
    s-left :  {tree₁ tree0 tree : bt A} → {key₁ : ℕ } → {v1 : A } → {st : List (bt A)} 
        → key  < key₁ →  stackInvariant key (node key₁ v1 tree₁ tree) tree0 st → stackInvariant key tree₁ tree0 (tree₁ ∷ st)

data replacedTree  {n : Level} {A : Set n} (key : ℕ) (value : A)  : (before after : bt A ) → Set n where
    r-leaf : replacedTree key value leaf (node key value leaf leaf)
    r-node : {value₁ : A} → {t t₁ : bt A} → replacedTree key value (node key value₁ t t₁) (node key value t t₁) 
    r-right : {k : ℕ } {v1 : A} → {t t1 t2 : bt A}
          → k < key →  replacedTree key value t2 t →  replacedTree key value (node k v1 t1 t2) (node k v1 t1 t) 
    r-left : {k : ℕ } {v1 : A} → {t t1 t2 : bt A}
          → key < k →  replacedTree key value t1 t →  replacedTree key value (node k v1 t1 t2) (node k v1 t t2) 

add< : { i : ℕ } (j : ℕ ) → i < suc i + j
add<  {i} j = begin
        suc i ≤⟨ m≤m+n (suc i) j ⟩
        suc i + j ∎  where open ≤-Reasoning

treeTest1  : bt ℕ
treeTest1  =  node 0 0 leaf (node 3 1 (node 2 5 (node 1 7 leaf leaf ) leaf) (node 5 5 leaf leaf))
treeTest2  : bt ℕ
treeTest2  =  node 3 1 (node 2 5 (node 1 7 leaf leaf ) leaf) (node 5 5 leaf leaf)

treeInvariantTest1  : treeInvariant treeTest1
treeInvariantTest1  = t-right (m≤m+n _ 2) (t-node (add< 0) (add< 1) (t-left (add< 0) (t-single 1 7)) (t-single 5 5) )

stack-top :  {n : Level} {A : Set n} (stack  : List (bt A)) → Maybe (bt A)
stack-top [] = nothing
stack-top (x ∷ s) = just x

stack-last :  {n : Level} {A : Set n} (stack  : List (bt A)) → Maybe (bt A)
stack-last [] = nothing
stack-last (x ∷ []) = just x
stack-last (x ∷ s) = stack-last s

stackInvariantTest1 : stackInvariant 4 treeTest2 treeTest1 ( treeTest2 ∷ treeTest1 ∷ [] )
stackInvariantTest1 = s-right (add< 3) (s-nil  )

si-property0 :  {n : Level} {A : Set n} {key : ℕ} {tree tree0 : bt A} → {stack  : List (bt A)} →  stackInvariant key tree tree0 stack → ¬ ( stack ≡ [] )
si-property0  (s-nil  ) ()
si-property0  (s-right x si) ()
si-property0  (s-left x si) ()

si-property1 :  {n : Level} {A : Set n} {key : ℕ} {tree tree0 tree1 : bt A} → {stack  : List (bt A)} →  stackInvariant key tree tree0 (tree1 ∷ stack)
   → tree1 ≡ tree
si-property1 (s-nil   ) = refl
si-property1 (s-right _  si) = refl
si-property1 (s-left _  si) = refl

si-property-last :  {n : Level} {A : Set n}  (key : ℕ) (tree tree0 : bt A) → (stack  : List (bt A)) →  stackInvariant key tree tree0 stack
   → stack-last stack ≡ just tree0
si-property-last key t t0 (t ∷ [])  (s-nil )  = refl
si-property-last key t t0 (.t ∷ x ∷ st) (s-right _ si ) with  si-property1 si
... | refl = si-property-last key x t0 (x ∷ st)   si
si-property-last key t t0 (.t ∷ x ∷ st) (s-left _ si ) with  si-property1  si
... | refl = si-property-last key x t0 (x ∷ st)   si

rt-property1 :  {n : Level} {A : Set n} (key : ℕ) (value : A) (tree tree1 : bt A ) → replacedTree key value tree tree1 → ¬ ( tree1 ≡ leaf )
rt-property1 {n} {A} key value .leaf .(node key value leaf leaf) r-leaf ()
rt-property1 {n} {A} key value .(node key _ _ _) .(node key value _ _) r-node ()
rt-property1 {n} {A} key value .(node _ _ _ _) _ (r-right x rt) = λ ()
rt-property1 {n} {A} key value .(node _ _ _ _) _ (r-left x rt) = λ ()

rt-property-leaf : {n : Level} {A : Set n} {key : ℕ} {value : A} {repl : bt A} → replacedTree key value leaf repl → repl ≡ node key value leaf leaf
rt-property-leaf r-leaf = refl

rt-property-¬leaf : {n : Level} {A : Set n} {key : ℕ} {value : A} {tree : bt A} → ¬ replacedTree key value tree leaf 
rt-property-¬leaf ()

rt-property-key : {n : Level} {A : Set n} {key key₂ key₃ : ℕ} {value value₂ value₃ : A} {left left₁ right₂ right₃ : bt A}
    →  replacedTree key value (node key₂ value₂ left right₂) (node key₃ value₃ left₁ right₃) → key₂ ≡ key₃
rt-property-key r-node = refl
rt-property-key (r-right x ri) = refl
rt-property-key (r-left x ri) = refl

nat-≤> : { x y : ℕ } → x ≤ y → y < x → ⊥
nat-≤>  (s≤s x<y) (s≤s y<x) = nat-≤> x<y y<x
nat-<> : { x y : ℕ } → x < y → y < x → ⊥
nat-<>  (s≤s x<y) (s≤s y<x) = nat-<> x<y y<x

open _∧_


depth-1< : {i j : ℕ} →   suc i ≤ suc (i Data.Nat.⊔ j )
depth-1< {i} {j} = s≤s (m≤m⊔n _ j)

depth-2< : {i j : ℕ} →   suc i ≤ suc (j Data.Nat.⊔ i )
depth-2< {i} {j} = s≤s (m≤n⊔m j i)

depth-3< : {i : ℕ } → suc i ≤ suc (suc i)
depth-3< {zero} = s≤s ( z≤n )
depth-3< {suc i} = s≤s (depth-3< {i} )


treeLeftDown  : {n : Level} {A : Set n} {k : ℕ} {v1 : A}  → (tree tree₁ : bt A )
      → treeInvariant (node k v1 tree tree₁)
      →      treeInvariant tree 
treeLeftDown {n} {A} {_} {v1} leaf leaf (t-single k1 v1) = t-leaf
treeLeftDown {n} {A} {_} {v1} .leaf .(node _ _ _ _) (t-right x ti) = t-leaf
treeLeftDown {n} {A} {_} {v1} .(node _ _ _ _) .leaf (t-left x ti) = ti 
treeLeftDown {n} {A} {_} {v1} .(node _ _ _ _) .(node _ _ _ _) (t-node x x₁ ti ti₁) = ti

treeRightDown  : {n : Level} {A : Set n} {k : ℕ} {v1 : A}  → (tree tree₁ : bt A )
      → treeInvariant (node k v1 tree tree₁)
      →      treeInvariant tree₁ 
treeRightDown {n} {A} {_} {v1} .leaf .leaf (t-single _ .v1) = t-leaf
treeRightDown {n} {A} {_} {v1} .leaf .(node _ _ _ _) (t-right x ti) = ti
treeRightDown {n} {A} {_} {v1} .(node _ _ _ _) .leaf (t-left x ti) = t-leaf
treeRightDown {n} {A} {_} {v1} .(node _ _ _ _) .(node _ _ _ _) (t-node x x₁ ti ti₁) = ti₁

findP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree tree0 : bt A ) → (stack : List (bt A))
           →  treeInvariant tree ∧ stackInvariant key tree tree0 stack  
           → (next : (tree1 : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant key tree1 tree0 stack → bt-depth tree1 < bt-depth tree   → t )
           → (exit : (tree1 : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant key tree1 tree0 stack
                 → (tree1 ≡ leaf ) ∨ ( node-key tree1 ≡ just key )  → t ) → t
findP key leaf tree0 st Pre _ exit = exit leaf st Pre (case1 refl)
findP key (node key₁ v1 tree tree₁) tree0 st Pre next exit with <-cmp key key₁
findP key n tree0 st Pre _ exit | tri≈ ¬a refl ¬c = exit n st Pre (case2 refl)
findP {n} {_} {A} key (node key₁ v1 tree tree₁) tree0 st  Pre next _ | tri< a ¬b ¬c = next tree (tree ∷ st)
       ⟪ treeLeftDown tree tree₁ (proj1 Pre)  , findP1 a st (proj2 Pre) ⟫ depth-1< where
   findP1 : key < key₁ → (st : List (bt A)) →  stackInvariant key (node key₁ v1 tree tree₁) tree0 st → stackInvariant key tree tree0 (tree ∷ st)
   findP1 a (x ∷ st) si = s-left a si
findP key n@(node key₁ v1 tree tree₁) tree0 st Pre next _ | tri> ¬a ¬b c = next tree₁ (tree₁ ∷ st) ⟪ treeRightDown tree tree₁ (proj1 Pre) , s-right c (proj2 Pre) ⟫ depth-2<

replaceTree1 : {n  : Level} {A : Set n} {t t₁ : bt A } → ( k : ℕ ) → (v1 value : A ) →  treeInvariant (node k v1 t t₁) → treeInvariant (node k value t t₁)
replaceTree1 k v1 value (t-single .k .v1) = t-single k value
replaceTree1 k v1 value (t-right x t) = t-right x t
replaceTree1 k v1 value (t-left x t) = t-left x t
replaceTree1 k v1 value (t-node x x₁ t t₁) = t-node x x₁ t t₁

open import Relation.Binary.Definitions

lemma3 : {i j : ℕ} → 0 ≡ i → j < i → ⊥
lemma3 refl ()
lemma5 : {i j : ℕ} → i < 1 → j < i → ⊥
lemma5 (s≤s z≤n) ()
¬x<x : {x : ℕ} → ¬ (x < x)
¬x<x (s≤s lt) = ¬x<x lt

child-replaced :  {n : Level} {A : Set n} (key : ℕ)   (tree : bt A) → bt A
child-replaced key leaf = leaf
child-replaced key (node key₁ value left right) with <-cmp key key₁
... | tri< a ¬b ¬c = left
... | tri≈ ¬a b ¬c = node key₁ value left right
... | tri> ¬a ¬b c = right

record replacePR {n : Level} {A : Set n} (key : ℕ) (value : A) (tree repl : bt A ) (stack : List (bt A)) (C : bt A → bt A → List (bt A) → Set n) : Set n where
   field
     tree0 : bt A
     ti : treeInvariant tree0
     si : stackInvariant key tree tree0 stack
     ri : replacedTree key value (child-replaced key tree ) repl
     ci : C tree repl stack     -- data continuation
   
replaceNodeP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → (tree : bt A)
    → (tree ≡ leaf ) ∨ ( node-key tree ≡ just key )
    → (treeInvariant tree ) → ((tree1 : bt A) → treeInvariant tree1 →  replacedTree key value (child-replaced key tree) tree1 → t) → t
replaceNodeP k v1 leaf C P next = next (node k v1 leaf leaf) (t-single k v1 ) r-leaf
replaceNodeP k v1 (node .k value t t₁) (case2 refl) P next = next (node k v1 t t₁) (replaceTree1 k value v1 P)
     (subst (λ j → replacedTree k v1 j  (node k v1 t t₁) ) repl00 r-node) where 
         repl00 : node k value t t₁ ≡ child-replaced k (node k value t t₁)
         repl00 with <-cmp k k
         ... | tri< a ¬b ¬c = ⊥-elim (¬b refl)
         ... | tri≈ ¬a b ¬c = refl
         ... | tri> ¬a ¬b c = ⊥-elim (¬b refl)

replaceP : {n m : Level} {A : Set n} {t : Set m}
     → (key : ℕ) → (value : A) → {tree : bt A} ( repl : bt A)
     → (stack : List (bt A)) → replacePR key value tree repl stack (λ _ _ _ → Lift n ⊤) 
     → (next : ℕ → A → {tree1 : bt A } (repl : bt A) → (stack1 : List (bt A))
         → replacePR key value tree1 repl stack1 (λ _ _ _ → Lift n ⊤) → length stack1 < length stack → t)
     → (exit : (tree1 repl : bt A) → treeInvariant tree1 ∧ replacedTree key value tree1 repl → t) → t
replaceP key value {tree}  repl [] Pre next exit = ⊥-elim ( si-property0 (replacePR.si Pre) refl ) -- can't happen
replaceP key value {tree}  repl (leaf ∷ []) Pre next exit with  si-property-last  _ _ _ _  (replacePR.si Pre)-- tree0 ≡ leaf
... | refl  =  exit (replacePR.tree0 Pre) (node key value leaf leaf) ⟪ replacePR.ti Pre ,  r-leaf ⟫
replaceP key value {tree}  repl (node key₁ value₁ left right ∷ []) Pre next exit with <-cmp key key₁
... | tri< a ¬b ¬c = exit (replacePR.tree0 Pre) (node key₁ value₁ repl right ) ⟪ replacePR.ti Pre , repl01 ⟫ where
    repl01 : replacedTree key value (replacePR.tree0 Pre) (node key₁ value₁ repl right )
    repl01 with si-property1 (replacePR.si Pre) | si-property-last  _ _ _ _  (replacePR.si Pre)   
    repl01 | refl | refl = subst (λ k → replacedTree key value  (node key₁ value₁ k right ) (node key₁ value₁ repl right )) repl02 (r-left a repl03) where
        repl03 : replacedTree key value ( child-replaced key (node key₁ value₁ left right)) repl
        repl03 = replacePR.ri Pre
        repl02 : child-replaced key (node key₁ value₁ left right) ≡ left
        repl02 with <-cmp key key₁
        ... | tri< a ¬b ¬c = refl 
        ... | tri≈ ¬a b ¬c = ⊥-elim ( ¬a a)
        ... | tri> ¬a ¬b c = ⊥-elim ( ¬a a)
... | tri≈ ¬a b ¬c = exit (replacePR.tree0 Pre) repl ⟪ replacePR.ti Pre , repl01 ⟫ where
    repl01 : replacedTree key value (replacePR.tree0 Pre) repl  
    repl01 with si-property1 (replacePR.si Pre) | si-property-last  _ _ _ _  (replacePR.si Pre)   
    repl01 | refl | refl = subst (λ k → replacedTree key value k repl) repl02 (replacePR.ri Pre) where
        repl02 : child-replaced key (node key₁ value₁ left right) ≡ node key₁ value₁ left right
        repl02 with <-cmp key key₁
        ... | tri< a ¬b ¬c = ⊥-elim ( ¬b b)
        ... | tri≈ ¬a b ¬c = refl
        ... | tri> ¬a ¬b c = ⊥-elim ( ¬b b)
... | tri> ¬a ¬b c = exit (replacePR.tree0 Pre) (node key₁ value₁ left repl  ) ⟪ replacePR.ti Pre , repl01 ⟫ where
    repl01 : replacedTree key value (replacePR.tree0 Pre) (node key₁ value₁ left repl )
    repl01 with si-property1 (replacePR.si Pre) | si-property-last  _ _ _ _  (replacePR.si Pre)   
    repl01 | refl | refl = subst (λ k → replacedTree key value  (node key₁ value₁ left k ) (node key₁ value₁ left repl )) repl02 (r-right c repl03) where
        repl03 : replacedTree key value ( child-replaced key (node key₁ value₁ left right)) repl
        repl03 = replacePR.ri Pre
        repl02 : child-replaced key (node key₁ value₁ left right) ≡ right
        repl02 with <-cmp key key₁
        ... | tri< a ¬b ¬c = ⊥-elim ( ¬c c)
        ... | tri≈ ¬a b ¬c = ⊥-elim ( ¬c c)
        ... | tri> ¬a ¬b c = refl 
replaceP {n} {_} {A} key value  {tree}  repl (leaf ∷ st@(tree1 ∷ st1)) Pre next exit = next key value repl st Post ≤-refl where
    Post :  replacePR key value tree1 repl (tree1 ∷ st1) (λ _ _ _ → Lift n ⊤)
    Post with replacePR.si Pre 
    ... | s-right  {_} {_} {tree₁} {key₂} {v1} x si = record { tree0 = replacePR.tree0 Pre ; ti = replacePR.ti Pre ; si = repl10 ; ri = repl12 ; ci = lift tt } where
        repl09 : tree1 ≡ node key₂ v1 tree₁ leaf
        repl09 = si-property1 si
        repl10 : stackInvariant key tree1 (replacePR.tree0 Pre) (tree1 ∷ st1)
        repl10 with si-property1 si
        ... | refl = si
        repl07 : child-replaced key (node key₂ v1 tree₁ leaf) ≡ leaf
        repl07 with <-cmp key key₂ 
        ... |  tri< a ¬b ¬c = ⊥-elim (¬c x)
        ... |  tri≈ ¬a b ¬c = ⊥-elim (¬c x)
        ... |  tri> ¬a ¬b c = refl
        repl12 : replacedTree key value (child-replaced key  tree1  ) repl
        repl12 = subst₂ (λ j k → replacedTree key value j k ) (sym (subst (λ k → child-replaced key k ≡ leaf) (sym repl09) repl07 ) ) (sym (rt-property-leaf (replacePR.ri Pre))) r-leaf
    ... | s-left  {_} {_} {tree₁} {key₂} {v1} x si = record { tree0 = replacePR.tree0 Pre ; ti = replacePR.ti Pre ; si = repl10 ; ri = repl12 ; ci = lift tt } where
        repl09 : tree1 ≡ node key₂ v1 leaf tree₁ 
        repl09 = si-property1 si
        repl10 : stackInvariant key tree1 (replacePR.tree0 Pre) (tree1 ∷ st1)
        repl10 with si-property1 si
        ... | refl = si
        repl07 : child-replaced key (node key₂ v1 leaf tree₁ ) ≡ leaf
        repl07 with <-cmp key key₂ 
        ... |  tri< a ¬b ¬c = refl
        ... |  tri≈ ¬a b ¬c = ⊥-elim (¬a x)
        ... |  tri> ¬a ¬b c = ⊥-elim (¬a x)
        repl12 : replacedTree key value (child-replaced key  tree1  ) repl
        repl12 = subst₂ (λ j k → replacedTree key value j k ) (sym (subst (λ k → child-replaced key k ≡ leaf) (sym repl09) repl07 ) ) (sym (rt-property-leaf (replacePR.ri Pre))) r-leaf
replaceP {n} {_} {A} key value {tree}  repl (node key₁ value₁ left right ∷ st@(tree1 ∷ st1)) Pre next exit  with <-cmp key key₁ 
... | tri< a ¬b ¬c = next key value (node key₁ value₁ repl right ) st Post ≤-refl where
    Post : replacePR key value tree1 (node key₁ value₁ repl right ) st (λ _ _ _ → Lift n ⊤) 
    Post with replacePR.si Pre 
    ... | s-right {_} {_} {tree₁} {key₂} {v1} lt si = record { tree0 = replacePR.tree0 Pre ; ti = replacePR.ti Pre ; si = repl10 ; ri = repl12 ; ci = lift tt } where
        repl09 : tree1 ≡ node key₂ v1 tree₁ (node key₁ value₁ left right) 
        repl09 = si-property1 si
        repl10 : stackInvariant key tree1 (replacePR.tree0 Pre) (tree1 ∷ st1)
        repl10 with si-property1 si
        ... | refl = si
        repl03 : child-replaced key (node key₁ value₁ left right) ≡ left
        repl03 with <-cmp key key₁ 
        ... | tri< a1 ¬b ¬c = refl
        ... | tri≈ ¬a b ¬c = ⊥-elim (¬a a)
        ... | tri> ¬a ¬b c = ⊥-elim (¬a a)
        repl02 : child-replaced key (node key₂ v1 tree₁ (node key₁ value₁ left right) ) ≡ node key₁ value₁ left right
        repl02 with repl09 | <-cmp key key₂
        ... | refl | tri< a ¬b ¬c = ⊥-elim (¬c lt)
        ... | refl | tri≈ ¬a b ¬c = ⊥-elim (¬c lt)
        ... | refl | tri> ¬a ¬b c = refl
        repl04 : node key₁ value₁ (child-replaced key (node key₁ value₁ left right)) right ≡ child-replaced key tree1
        repl04  = begin
            node key₁ value₁ (child-replaced key (node key₁ value₁ left right)) right ≡⟨ cong (λ k → node key₁ value₁ k right) repl03  ⟩
            node key₁ value₁ left right ≡⟨ sym repl02 ⟩
            child-replaced key  (node key₂ v1 tree₁ (node key₁ value₁ left right) ) ≡⟨ cong (λ k → child-replaced key k ) (sym repl09) ⟩
            child-replaced key tree1 ∎  where open ≡-Reasoning
        repl12 : replacedTree key value (child-replaced key  tree1  ) (node key₁ value₁ repl right)
        repl12 = subst (λ k → replacedTree key value k (node key₁ value₁ repl right) ) repl04  (r-left a (replacePR.ri Pre)) 
    ... | s-left {_} {_} {tree₁} {key₂} {v1} lt si = record { tree0 = replacePR.tree0 Pre ; ti = replacePR.ti Pre ; si = repl10 ; ri = repl12 ; ci = lift tt } where
        repl09 : tree1 ≡ node key₂ v1 (node key₁ value₁ left right) tree₁  
        repl09 = si-property1 si
        repl10 : stackInvariant key tree1 (replacePR.tree0 Pre) (tree1 ∷ st1)
        repl10 with si-property1 si
        ... | refl = si
        repl03 : child-replaced key (node key₁ value₁ left right) ≡ left
        repl03 with <-cmp key key₁ 
        ... | tri< a1 ¬b ¬c = refl
        ... | tri≈ ¬a b ¬c = ⊥-elim (¬a a)
        ... | tri> ¬a ¬b c = ⊥-elim (¬a a)
        repl02 : child-replaced key (node key₂ v1 (node key₁ value₁ left right) tree₁) ≡ node key₁ value₁ left right
        repl02 with repl09 | <-cmp key key₂
        ... | refl | tri< a ¬b ¬c = refl
        ... | refl | tri≈ ¬a b ¬c = ⊥-elim (¬a lt)
        ... | refl | tri> ¬a ¬b c = ⊥-elim (¬a lt)
        repl04 : node key₁ value₁ (child-replaced key (node key₁ value₁ left right)) right ≡ child-replaced key tree1
        repl04  = begin
            node key₁ value₁ (child-replaced key (node key₁ value₁ left right)) right ≡⟨ cong (λ k → node key₁ value₁ k right) repl03  ⟩
            node key₁ value₁ left right ≡⟨ sym repl02 ⟩
            child-replaced key  (node key₂ v1 (node key₁ value₁ left right) tree₁) ≡⟨ cong (λ k → child-replaced key k ) (sym repl09) ⟩
            child-replaced key tree1 ∎  where open ≡-Reasoning
        repl12 : replacedTree key value (child-replaced key  tree1  ) (node key₁ value₁ repl right)
        repl12 = subst (λ k → replacedTree key value k (node key₁ value₁ repl right) ) repl04  (r-left a (replacePR.ri Pre)) 
... | tri≈ ¬a b ¬c = next key value (node key₁ value  left right ) st Post ≤-refl where 
    Post :  replacePR key value tree1 (node key₁ value left right ) (tree1 ∷ st1) (λ _ _ _ → Lift n ⊤)
    Post with replacePR.si Pre 
    ... | s-right  {_} {_} {tree₁} {key₂} {v1} x si = record { tree0 = replacePR.tree0 Pre ; ti = replacePR.ti Pre ; si = repl10 ; ri = repl12 b ; ci = lift tt } where
        repl09 : tree1 ≡ node key₂ v1 tree₁ tree -- (node key₁ value₁  left right)
        repl09 = si-property1 si
        repl10 : stackInvariant key tree1 (replacePR.tree0 Pre) (tree1 ∷ st1)
        repl10 with si-property1 si
        ... | refl = si
        repl07 : child-replaced key (node key₂ v1 tree₁ tree) ≡ tree
        repl07 with <-cmp key key₂ 
        ... |  tri< a ¬b ¬c = ⊥-elim (¬c x)
        ... |  tri≈ ¬a b ¬c = ⊥-elim (¬c x)
        ... |  tri> ¬a ¬b c = refl
        repl12 : (key ≡ key₁) → replacedTree key value (child-replaced key  tree1  ) (node key₁ value left right )
        repl12 refl with repl09 
        ... | refl = subst (λ k → replacedTree key value k (node key₁ value left right )) (sym repl07) r-node
    ... | s-left  {_} {_} {tree₁} {key₂} {v1} x si = record { tree0 = replacePR.tree0 Pre ; ti = replacePR.ti Pre ; si = repl10 ; ri = repl12 b ; ci = lift tt } where
        repl09 : tree1 ≡ node key₂ v1 tree tree₁ 
        repl09 = si-property1 si
        repl10 : stackInvariant key tree1 (replacePR.tree0 Pre) (tree1 ∷ st1)
        repl10 with si-property1 si
        ... | refl = si
        repl07 : child-replaced key (node key₂ v1 tree tree₁ ) ≡ tree
        repl07 with <-cmp key key₂ 
        ... |  tri< a ¬b ¬c = refl
        ... |  tri≈ ¬a b ¬c = ⊥-elim (¬a x)
        ... |  tri> ¬a ¬b c = ⊥-elim (¬a x)
        repl12 : (key ≡ key₁) → replacedTree key value (child-replaced key  tree1  ) (node key₁ value left right )
        repl12 refl with repl09 
        ... | refl = subst (λ k → replacedTree key value k (node key₁ value left right )) (sym repl07) r-node
... | tri> ¬a ¬b c = next key value (node key₁ value₁ left repl ) st Post ≤-refl where
    Post : replacePR key value tree1 (node key₁ value₁ left repl ) st (λ _ _ _ → Lift n ⊤) 
    Post with replacePR.si Pre 
    ... | s-right {_} {_} {tree₁} {key₂} {v1} lt si = record { tree0 = replacePR.tree0 Pre ; ti = replacePR.ti Pre ; si = repl10 ; ri = repl12 ; ci = lift tt } where
        repl09 : tree1 ≡ node key₂ v1 tree₁ (node key₁ value₁ left right) 
        repl09 = si-property1 si
        repl10 : stackInvariant key tree1 (replacePR.tree0 Pre) (tree1 ∷ st1)
        repl10 with si-property1 si
        ... | refl = si
        repl03 : child-replaced key (node key₁ value₁ left right) ≡ right
        repl03 with <-cmp key key₁ 
        ... | tri< a1 ¬b ¬c = ⊥-elim (¬c c)
        ... | tri≈ ¬a b ¬c = ⊥-elim (¬c c)
        ... | tri> ¬a ¬b c = refl 
        repl02 : child-replaced key (node key₂ v1 tree₁ (node key₁ value₁ left right) ) ≡ node key₁ value₁ left right
        repl02 with repl09 | <-cmp key key₂
        ... | refl | tri< a ¬b ¬c = ⊥-elim (¬c lt)
        ... | refl | tri≈ ¬a b ¬c = ⊥-elim (¬c lt)
        ... | refl | tri> ¬a ¬b c = refl
        repl04 : node key₁ value₁ left (child-replaced key (node key₁ value₁ left right)) ≡ child-replaced key tree1
        repl04  = begin
            node key₁ value₁ left (child-replaced key (node key₁ value₁ left right)) ≡⟨ cong (λ k → node key₁ value₁ left k ) repl03 ⟩
            node key₁ value₁ left right ≡⟨ sym repl02 ⟩
            child-replaced key  (node key₂ v1 tree₁ (node key₁ value₁ left right) ) ≡⟨ cong (λ k → child-replaced key k ) (sym repl09) ⟩
            child-replaced key tree1 ∎  where open ≡-Reasoning
        repl12 : replacedTree key value (child-replaced key  tree1  ) (node key₁ value₁ left repl)
        repl12 = subst (λ k → replacedTree key value k (node key₁ value₁ left repl) ) repl04 (r-right c (replacePR.ri Pre)) 
    ... | s-left {_} {_} {tree₁} {key₂} {v1} lt si = record { tree0 = replacePR.tree0 Pre ; ti = replacePR.ti Pre ; si = repl10 ; ri = repl12 ; ci = lift tt } where
        repl09 : tree1 ≡ node key₂ v1 (node key₁ value₁ left right) tree₁  
        repl09 = si-property1 si
        repl10 : stackInvariant key tree1 (replacePR.tree0 Pre) (tree1 ∷ st1)
        repl10 with si-property1 si
        ... | refl = si
        repl03 : child-replaced key (node key₁ value₁ left right) ≡ right
        repl03 with <-cmp key key₁ 
        ... | tri< a1 ¬b ¬c = ⊥-elim (¬c c)
        ... | tri≈ ¬a b ¬c = ⊥-elim (¬c c)
        ... | tri> ¬a ¬b c = refl 
        repl02 : child-replaced key (node key₂ v1 (node key₁ value₁ left right) tree₁) ≡ node key₁ value₁ left right
        repl02 with repl09 | <-cmp key key₂
        ... | refl | tri< a ¬b ¬c = refl
        ... | refl | tri≈ ¬a b ¬c = ⊥-elim (¬a lt)
        ... | refl | tri> ¬a ¬b c = ⊥-elim (¬a lt)
        repl04 : node key₁ value₁ left (child-replaced key (node key₁ value₁ left right)) ≡ child-replaced key tree1
        repl04  = begin
            node key₁ value₁ left (child-replaced key (node key₁ value₁ left right)) ≡⟨ cong (λ k → node key₁ value₁ left k ) repl03 ⟩
            node key₁ value₁ left right ≡⟨ sym repl02 ⟩
            child-replaced key  (node key₂ v1 (node key₁ value₁ left right) tree₁) ≡⟨ cong (λ k → child-replaced key k ) (sym repl09) ⟩
            child-replaced key tree1 ∎  where open ≡-Reasoning
        repl12 : replacedTree key value (child-replaced key  tree1  ) (node key₁ value₁ left repl)
        repl12 = subst (λ k → replacedTree key value k (node key₁ value₁ left repl) ) repl04  (r-right c (replacePR.ri Pre)) 

TerminatingLoopS : {l m : Level} {t : Set l} (Index : Set m ) → {Invraiant : Index → Set m } → ( reduce : Index → ℕ)
   → (r : Index) → (p : Invraiant r)  
   → (loop : (r : Index)  → Invraiant r → (next : (r1 : Index)  → Invraiant r1 → reduce r1 < reduce r  → t ) → t) → t
TerminatingLoopS {_} {_} {t} Index {Invraiant} reduce r p loop with <-cmp 0 (reduce r)
... | tri≈ ¬a b ¬c = loop r p (λ r1 p1 lt → ⊥-elim (lemma3 b lt) ) 
... | tri< a ¬b ¬c = loop r p (λ r1 p1 lt1 → TerminatingLoop1 (reduce r) r r1 (≤-step lt1) p1 lt1 ) where 
    TerminatingLoop1 : (j : ℕ) → (r r1 : Index) → reduce r1 < suc j  → Invraiant r1 →  reduce r1 < reduce r → t
    TerminatingLoop1 zero r r1 n≤j p1 lt = loop r1 p1 (λ r2 p1 lt1 → ⊥-elim (lemma5 n≤j lt1)) 
    TerminatingLoop1 (suc j) r r1  n≤j p1 lt with <-cmp (reduce r1) (suc j)
    ... | tri< a ¬b ¬c = TerminatingLoop1 j r r1 a p1 lt 
    ... | tri≈ ¬a b ¬c = loop r1 p1 (λ r2 p2 lt1 → TerminatingLoop1 j r1 r2 (subst (λ k → reduce r2 < k ) b lt1 ) p2 lt1 )
    ... | tri> ¬a ¬b c =  ⊥-elim ( nat-≤> c n≤j )   

open _∧_

RTtoTI0  : {n : Level} {A : Set n}  → (tree repl : bt A) → (key : ℕ) → (value : A) → treeInvariant tree
     → replacedTree key value tree repl → treeInvariant repl
RTtoTI0 .leaf .(node key value leaf leaf) key value ti r-leaf = t-single key value
RTtoTI0 .(node key _ leaf leaf) .(node key value leaf leaf) key value (t-single .key _) r-node = t-single key value
RTtoTI0 .(node key _ leaf (node _ _ _ _)) .(node key value leaf (node _ _ _ _)) key value (t-right x ti) r-node = t-right x ti 
RTtoTI0 .(node key _ (node _ _ _ _) leaf) .(node key value (node _ _ _ _) leaf) key value (t-left x ti) r-node = t-left x ti 
RTtoTI0 .(node key _ (node _ _ _ _) (node _ _ _ _)) .(node key value (node _ _ _ _) (node _ _ _ _)) key value (t-node x x₁ ti ti₁) r-node = t-node x x₁ ti ti₁
-- r-right case
RTtoTI0 (node _ _ leaf leaf) (node _ _ leaf .(node key value leaf leaf)) key value (t-single _ _) (r-right x r-leaf) = t-right x (t-single key value)
RTtoTI0 (node _ _ leaf right@(node _ _ _ _)) (node key₁ value₁ leaf leaf) key value (t-right x₁ ti) (r-right x ri) = t-single key₁ value₁
RTtoTI0 (node key₁ _ leaf right@(node key₂ _ _ _)) (node key₁ value₁ leaf right₁@(node key₃ _ _ _)) key value (t-right x₁ ti) (r-right x ri) = 
      t-right (subst (λ k → key₁ < k ) (rt-property-key ri) x₁) (RTtoTI0 _ _ key value ti ri)
RTtoTI0 (node key₁ _ (node _ _ _ _) leaf) (node key₁ _ (node key₃ value left right) leaf) key value₁ (t-left x₁ ti) (r-right x ())
RTtoTI0 (node key₁ _ (node key₃ _ _ _) leaf) (node key₁ _ (node key₃ value₃ _ _) (node key value leaf leaf)) key value (t-left x₁ ti) (r-right x r-leaf) =
      t-node x₁ x ti (t-single key value) 
RTtoTI0 (node key₁ _ (node _ _ _ _) (node key₂ _ _ _)) (node key₁ _ (node _ _ _ _) (node key₃ _ _ _)) key value (t-node x₁ x₂ ti ti₁) (r-right x ri) =
      t-node x₁ (subst (λ k → key₁ < k) (rt-property-key ri) x₂) ti (RTtoTI0 _ _ key value ti₁ ri)
-- r-left case
RTtoTI0 .(node _ _ leaf leaf) .(node _ _ (node key value leaf leaf) leaf) key value (t-single _ _) (r-left x r-leaf) = t-left x (t-single _ _ )
RTtoTI0 .(node _ _ leaf (node _ _ _ _)) (node key₁ value₁ (node key value leaf leaf) (node _ _ _ _)) key value (t-right x₁ ti) (r-left x r-leaf) = t-node x x₁ (t-single key value) ti
RTtoTI0 (node key₃ _ (node key₂ _ _ _) leaf) (node key₃ _ (node key₁ value₁ left left₁) leaf) key value (t-left x₁ ti) (r-left x ri) =
      t-left (subst (λ k → k < key₃ ) (rt-property-key ri) x₁) (RTtoTI0 _ _ key value ti ri) -- key₁ < key₃
RTtoTI0 (node key₁ _ (node key₂ _ _ _) (node _ _ _ _)) (node key₁ _ (node key₃ _ _ _) (node _ _ _ _)) key value (t-node x₁ x₂ ti ti₁) (r-left x ri) = t-node (subst (λ k → k < key₁ ) (rt-property-key ri) x₁) x₂  (RTtoTI0 _ _ key value ti ri) ti₁

RTtoTI1  : {n : Level} {A : Set n}  → (tree repl : bt A) → (key : ℕ) → (value : A) → treeInvariant repl
     → replacedTree key value tree repl → treeInvariant tree
RTtoTI1 .leaf .(node key value leaf leaf) key value ti r-leaf = t-leaf
RTtoTI1 (node key value₁ leaf leaf) .(node key value leaf leaf) key value (t-single .key .value) r-node = t-single key value₁
RTtoTI1 .(node key _ leaf (node _ _ _ _)) .(node key value leaf (node _ _ _ _)) key value (t-right x ti) r-node = t-right x ti
RTtoTI1 .(node key _ (node _ _ _ _) leaf) .(node key value (node _ _ _ _) leaf) key value (t-left x ti) r-node = t-left x ti
RTtoTI1 .(node key _ (node _ _ _ _) (node _ _ _ _)) .(node key value (node _ _ _ _) (node _ _ _ _)) key value (t-node x x₁ ti ti₁) r-node = t-node x x₁ ti ti₁
-- r-right case
RTtoTI1 (node key₁ value₁ leaf leaf) (node key₁ _ leaf (node _ _ _ _)) key value (t-right x₁ ti) (r-right x r-leaf) = t-single key₁ value₁
RTtoTI1 (node key₁ value₁ leaf (node key₂ value₂ t2 t3)) (node key₁ _ leaf (node key₃ _ _ _)) key value (t-right x₁ ti) (r-right x ri) =
   t-right (subst (λ k → key₁ < k ) (sym (rt-property-key ri)) x₁)  (RTtoTI1 _ _ key value ti ri) -- key₁ < key₂
RTtoTI1 (node _ _ (node _ _ _ _) leaf) (node _ _ (node _ _ _ _) (node key value _ _)) key value (t-node x₁ x₂ ti ti₁) (r-right x r-leaf) =
    t-left x₁ ti
RTtoTI1 (node key₄ _ (node key₃ _ _ _) (node key₁ value₁ n n₁)) (node key₄ _ (node key₃ _ _ _) (node key₂ _ _ _)) key value (t-node x₁ x₂ ti ti₁) (r-right x ri) = t-node x₁ (subst (λ k → key₄ < k ) (sym (rt-property-key ri)) x₂) ti (RTtoTI1 _ _ key value ti₁ ri) -- key₄ < key₁
-- r-left case
RTtoTI1 (node key₁ value₁ leaf leaf) (node key₁ _ _ leaf) key value (t-left x₁ ti) (r-left x ri) = t-single key₁ value₁
RTtoTI1 (node key₁ _ (node key₂ value₁ n n₁) leaf) (node key₁ _ (node key₃ _ _ _) leaf) key value (t-left x₁ ti) (r-left x ri) = 
   t-left (subst (λ k → k < key₁ ) (sym (rt-property-key ri)) x₁) (RTtoTI1 _ _ key value ti ri) -- key₂ < key₁
RTtoTI1 (node key₁ value₁ leaf _) (node key₁ _ _ _) key value (t-node x₁ x₂ ti ti₁) (r-left x r-leaf) = t-right x₂ ti₁
RTtoTI1 (node key₁ value₁ (node key₂ value₂ n n₁) _) (node key₁ _ _ _) key value (t-node x₁ x₂ ti ti₁) (r-left x ri) = 
    t-node (subst (λ k → k < key₁ ) (sym (rt-property-key ri)) x₁) x₂ (RTtoTI1 _ _ key value ti ri) ti₁ -- key₂ < key₁

insertTreeP : {n m : Level} {A : Set n} {t : Set m} → (tree : bt A) → (key : ℕ) → (value : A) → treeInvariant tree
     → (exit : (tree repl : bt A) → treeInvariant repl ∧ replacedTree key value tree repl → t ) → t
insertTreeP {n} {m} {A} {t} tree key value P0 exit =
   TerminatingLoopS (bt A ∧ List (bt A) ) {λ p → treeInvariant (proj1 p) ∧ stackInvariant key (proj1 p) tree (proj2 p) } (λ p → bt-depth (proj1 p)) ⟪ tree , tree ∷ [] ⟫  ⟪ P0 , s-nil ⟫
       $ λ p P loop → findP key (proj1 p)  tree (proj2 p) P (λ t s P1 lt → loop ⟪ t ,  s  ⟫ P1 lt ) 
       $ λ t s P C → replaceNodeP key value t C (proj1 P)
       $ λ t1 P1 R → TerminatingLoopS (List (bt A) ∧ bt A ∧ bt A )
            {λ p → replacePR key value  (proj1 (proj2 p)) (proj2 (proj2 p)) (proj1 p)  (λ _ _ _ → Lift n ⊤ ) }
               (λ p → length (proj1 p)) ⟪ s , ⟪ t , t1 ⟫ ⟫ record { tree0 = tree ; ti = P0 ; si = proj2 P ; ri = R ; ci = lift tt } 
       $  λ p P1 loop → replaceP key value  (proj2 (proj2 p)) (proj1 p) P1
            (λ key value {tree1} repl1 stack P2 lt → loop ⟪ stack , ⟪ tree1 , repl1  ⟫ ⟫ P2 lt )
       $ λ tree repl P →  exit tree repl ⟪ RTtoTI0 _ _ _ _ (proj1 P) (proj2 P) , proj2 P ⟫   

insertTestP1 = insertTreeP leaf 1 1 t-leaf
  $ λ _ x0 P0 → insertTreeP x0 2 1 (proj1 P0) 
  $ λ _ x1 P1 → insertTreeP x1 3 2 (proj1 P1)  
  $ λ _ x2 P2 → insertTreeP x2 2 2 (proj1 P2) (λ _ x P  → x )

top-value : {n : Level} {A : Set n} → (tree : bt A) →  Maybe A 
top-value leaf = nothing
top-value (node key value tree tree₁) = just value

-- is realy inserted?

-- other element is preserved?

-- deletion?

data Color  : Set where
    Red : Color
    Black : Color

data RBtreeInvariant {n : Level} {A : Set n} : (tree : bt (Color ∧ A)) → (bd : ℕ) → Set n where
    rb-leaf     : RBtreeInvariant leaf 0
    rb-single : (key : ℕ) → (value : A) →  RBtreeInvariant (node key ⟪ Black , value ⟫ leaf leaf) 1
    rb-right-red : {key key₁ : ℕ} → {value value₁ : A} → {t t₁ : bt (Color ∧ A)} → key < key₁ 
       → RBtreeInvariant (node key₁ ⟪ Black , value₁ ⟫ t t₁) 1
       → RBtreeInvariant (node key  ⟪ Red ,   value  ⟫ leaf (node key₁ ⟪ Black , value₁ ⟫ t t₁)) 1
    rb-right-black : {key key₁ : ℕ} → {value value₁ : A} → {t t₁ : bt (Color ∧ A)} → key < key₁ →  {c : Color}
       → RBtreeInvariant (node key₁ ⟪ c     , value₁ ⟫ t t₁) 1
       → RBtreeInvariant (node key  ⟪ Black , value  ⟫ leaf (node key₁ ⟪ c , value₁ ⟫ t t₁)) 1
    rb-left-red : {key key₁ : ℕ} → {value value₁ : A} → {t t₁ : bt (Color ∧ A)} → key < key₁ 
       → RBtreeInvariant (node key₁ ⟪ Black , value₁ ⟫ t t₁) 1
       → RBtreeInvariant (node key₁  ⟪ Red ,   value  ⟫ (node key ⟪ Black , value₁ ⟫ t t₁) leaf ) 1
    rb-left-black : {key key₁ : ℕ} → {value value₁ : A} → {t t₁ : bt (Color ∧ A)} → key < key₁ →  {c : Color}
       → RBtreeInvariant (node key₁ ⟪ c     , value₁ ⟫ t t₁) 1
       → RBtreeInvariant (node key₁  ⟪ Black , value  ⟫ (node key ⟪ c , value₁ ⟫ t t₁) leaf) 1
    rb-node-red  : {key key₁ key₂ : ℕ} → {value value₁ value₂ : A} → {t₁ t₂ t₃ t₄ : bt (Color ∧ A)} → key < key₁ → key₁ < key₂ → {d : ℕ}
       → RBtreeInvariant (node key ⟪ Black , value ⟫ t₁ t₂) d
       → RBtreeInvariant (node key₂ ⟪ Black , value₂ ⟫ t₃ t₄) d
       → RBtreeInvariant (node key₁ ⟪ Red , value₁ ⟫ (node key ⟪ Black , value ⟫ t₁ t₂) (node key₂ ⟪ Black , value₂ ⟫ t₃ t₄)) d
    rb-node-black  : {key key₁ key₂ : ℕ} → {value value₁ value₂ : A} → {t₁ t₂ t₃ t₄ : bt (Color ∧ A)} → key < key₁ → key₁ < key₂ → {d : ℕ}
       → {c c₁ : Color}
       → RBtreeInvariant (node key  ⟪ c  , value  ⟫ t₁ t₂) d
       → RBtreeInvariant (node key₂ ⟪ c₁ , value₂ ⟫ t₃ t₄) d
       → RBtreeInvariant (node key₁ ⟪ Black , value₁ ⟫ (node key ⟪ c , value ⟫ t₁ t₂) (node key₂ ⟪ c₁ , value₂ ⟫ t₃ t₄)) (suc d)

tesr-rb-0 : RBtreeInvariant {_} {ℕ} leaf 0
tesr-rb-0 = rb-leaf

tesr-rb-1 : RBtreeInvariant {_} {ℕ} (node 10 ⟪ Black , 10 ⟫ leaf leaf) 1
tesr-rb-1 = rb-single 10 10

tesr-rb-2 : RBtreeInvariant {_} {ℕ} (node 10 ⟪ Red , 10 ⟫ (node 5 ⟪ Black , 5 ⟫ leaf leaf)  leaf) 1
tesr-rb-2 = rb-left-red (add< _) ( rb-single 10 5)

-- This one can be very difficult
-- data replacedRBTree  {n : Level} {A : Set n} (key : ℕ) (value : A)  : (before after : bt (Color ∧ A) ) → Set n where
--    rb-leaf : replacedRBTree key value leaf (node key ⟪ Black , value ⟫ leaf leaf)

color : {n : Level} (A : Set n)  → (rb : bt (Color ∧ A)) → Color
color {n} A leaf = Red
color {n} A (node key ⟪ c , v ⟫ rb rb₁) = c

RB→bt : {n : Level} (A : Set n)  → (rb : bt (Color ∧ A)) → bt A
RB→bt {n} A leaf = leaf
RB→bt {n} A (node key ⟪ c , value ⟫ rb rb₁) = node key value (RB→bt A rb) (RB→bt A rb₁) 

data replacedRBTree  {n : Level} {A : Set n} (key : ℕ) (value : A)  : (before after : bt (Color ∧ A) ) → Set n where
    rbr-leaf : {ca cb : Color} → replacedRBTree key value leaf (node key ⟪ cb , value ⟫ leaf leaf)
    rbr-node : {value₁ : A} → {ca cb : Color } → {t t₁ : bt (Color ∧ A)} → replacedRBTree key value (node key ⟪ ca , value₁ ⟫ t t₁) (node key ⟪ cb , value ⟫ t t₁) 
    rbr-right : {k : ℕ } {v1 : A} → {ca cb : Color} → {t t1 t2 : bt (Color ∧ A)}
          → k < key →  replacedRBTree key value t2 t →  replacedRBTree key value (node k ⟪ ca , v1 ⟫ t1 t2) (node k ⟪ cb , v1 ⟫ t1 t) 
    rbr-left : {k : ℕ } {v1 : A} → {ca cb : Color} → {t t1 t2 : bt (Color ∧ A)}
          → k < key →  replacedRBTree key value t1 t →  replacedRBTree key value (node k ⟪ ca , v1 ⟫ t1 t2) (node k ⟪ cb , v1 ⟫ t t2) 

data ParentGrand {n : Level} {A : Set n} (self : bt A) : (parent uncle grand : bt A) → Set n where
    s2-s1p2 : {kp kg : ℕ} {vp vg : A} → {n1 n2 : bt A} {parent grand : bt A } 
        → parent ≡ node kp vp self n1 → grand ≡ node kg vg parent n2 → ParentGrand self parent n2 grand 
    s2-1sp2 : {kp kg : ℕ} {vp vg : A} → {n1 n2 : bt A} {parent grand : bt A } 
        → parent ≡ node kp vp n1 self → grand ≡ node kg vg parent n2 → ParentGrand self parent n2 grand 
    s2-s12p : {kp kg : ℕ} {vp vg : A} → {n1 n2 : bt A} {parent grand : bt A } 
        → parent ≡ node kp vp self n1 → grand ≡ node kg vg n2 parent → ParentGrand self parent n2 grand 
    s2-1s2p : {kp kg : ℕ} {vp vg : A} → {n1 n2 : bt A} {parent grand : bt A } 
        → parent ≡ node kp vp n1 self → grand ≡ node kg vg n2 parent → ParentGrand self parent n2 grand 

-- with color
data rotatedTree  {n : Level} {A : Set n}  : (before after : bt A ) → Set n where
    rr-node : {t : bt A} → rotatedTree t t
    --      a                 b 
    --    b   c             d   a
    --  d   e                 e   c
    rr-right : {ka kb : ℕ } {va vb : A} → {c c₁ d d₁ e e₁ : bt A}
          → ka < kb
          → rotatedTree d d₁ → rotatedTree e e₁ → rotatedTree c c₁
          → rotatedTree (node ka va (node kb vb d e)  c) (node kb vb d₁ (node ka va e₁ c₁) ) 
    --     b                  a 
    --   d   a              b   c
    --     e   c          d   e
    rr-left : {ka kb : ℕ } {va vb : A} → {c c₁ d d₁ e e₁ : bt A}
          → ka < kb
          → rotatedTree d d₁ → rotatedTree e e₁ → rotatedTree c c₁
          → rotatedTree (node kb vb d (node ka va e c) ) (node ka va (node kb vb d₁ e₁)  c₁) 

record PG {n : Level } (A : Set n) (self : bt A) (stack : List (bt A)) : Set n where
    field
       parent grand uncle : bt A
       pg : ParentGrand self parent uncle grand
       rest : List (bt A)
       stack=gp : stack ≡ ( self ∷ parent ∷ grand ∷ rest )

stackToPG : {n : Level} {A : Set n} → {key : ℕ } → (tree orig : bt A )
           →  (stack : List (bt A)) → stackInvariant key tree orig stack
           → ( stack ≡ orig ∷ [] ) ∨ ( stack ≡ tree ∷ orig ∷ [] ) ∨ PG A tree stack
stackToPG {n} {A} {key} tree .tree .(tree ∷ []) s-nil = case1 refl
stackToPG {n} {A} {key} tree .(node _ _ _ tree) .(tree ∷ node _ _ _ tree ∷ []) (s-right x s-nil) = case2 (case1 refl)
stackToPG {n} {A} {key} tree .(node k2 v2 t5 (node k1 v1 t2 tree)) (tree ∷ node _ _ _ tree ∷ .(node k2 v2 t5 (node k1 v1 t2 tree) ∷ [])) (s-right {.tree} {.(node k2 v2 t5 (node k1 v1 t2 tree))} {t2} {k1} {v1} x (s-right {.(node k1 v1 t2 tree)} {.(node k2 v2 t5 (node k1 v1 t2 tree))} {t5} {k2} {v2} x₁ s-nil)) = case2 (case2 
    record {  parent = node k1 v1 t2 tree ;  grand = _ ; pg = s2-1s2p  refl refl  ; rest = _ ; stack=gp = refl } )
stackToPG {n} {A} {key} tree orig (tree ∷ node _ _ _ tree ∷ .(node k2 v2 t5 (node k1 v1 t2 tree) ∷ _)) (s-right {.tree} {.orig} {t2} {k1} {v1} x (s-right {.(node k1 v1 t2 tree)} {.orig} {t5} {k2} {v2} x₁ (s-right x₂ si))) = case2 (case2 
    record {  parent = node k1 v1 t2 tree ;  grand = _ ; pg = s2-1s2p  refl refl  ; rest = _ ; stack=gp = refl } )
stackToPG {n} {A} {key} tree orig (tree ∷ node _ _ _ tree ∷ .(node k2 v2 t5 (node k1 v1 t2 tree) ∷ _)) (s-right {.tree} {.orig} {t2} {k1} {v1} x (s-right {.(node k1 v1 t2 tree)} {.orig} {t5} {k2} {v2} x₁ (s-left x₂ si))) = case2 (case2
    record {  parent = node k1 v1 t2 tree ;  grand = _ ; pg = s2-1s2p  refl refl  ; rest = _ ; stack=gp = refl } )
stackToPG {n} {A} {key} tree .(node k2 v2 (node k1 v1 t1 tree) t2) .(tree ∷ node k1 v1 t1 tree ∷ node k2 v2 (node k1 v1 t1 tree) t2 ∷ []) (s-right {_} {_} {t1} {k1} {v1} x (s-left {_} {_} {t2} {k2} {v2} x₁ s-nil)) = case2 (case2
    record {  parent = node k1 v1 t1 tree ;  grand = _ ; pg = s2-1sp2 refl refl ; rest = _ ; stack=gp = refl } )
stackToPG {n} {A} {key} tree orig .(tree ∷ node k1 v1 t1 tree ∷ node k2 v2 (node k1 v1 t1 tree) t2 ∷ _) (s-right {_} {_} {t1} {k1} {v1} x (s-left {_} {_} {t2} {k2} {v2} x₁ (s-right x₂ si))) = case2 (case2
    record {  parent = node k1 v1 t1 tree ;  grand = _ ; pg = s2-1sp2 refl refl ; rest = _ ; stack=gp = refl } )
stackToPG {n} {A} {key} tree orig .(tree ∷ node k1 v1 t1 tree ∷ node k2 v2 (node k1 v1 t1 tree) t2 ∷ _) (s-right {_} {_} {t1} {k1} {v1} x (s-left {_} {_} {t2} {k2} {v2} x₁ (s-left x₂ si))) = case2 (case2
    record {  parent = node k1 v1 t1 tree ;  grand = _ ; pg = s2-1sp2 refl refl ; rest = _ ; stack=gp = refl } )
stackToPG {n} {A} {key} tree .(node _ _ tree _) .(tree ∷ node _ _ tree _ ∷ []) (s-left {_} {_} {t1} {k1} {v1} x s-nil) = case2 (case1 refl)
stackToPG {n} {A} {key} tree .(node _ _ _ (node k1 v1 tree t1)) .(tree ∷ node k1 v1 tree t1 ∷ node _ _ _ (node k1 v1 tree t1) ∷ []) (s-left {_} {_} {t1} {k1} {v1} x (s-right x₁ s-nil)) = case2 (case2
    record {  parent = node k1 v1 tree t1 ;  grand = _ ; pg =  s2-s12p refl refl ; rest = _ ; stack=gp = refl } )
stackToPG {n} {A} {key} tree orig .(tree ∷ node k1 v1 tree t1 ∷ node _ _ _ (node k1 v1 tree t1) ∷ _) (s-left {_} {_} {t1} {k1} {v1} x (s-right x₁ (s-right x₂ si))) = case2 (case2
    record {  parent = node k1 v1 tree t1 ;  grand = _ ; pg =  s2-s12p refl refl ; rest = _ ; stack=gp = refl } )
stackToPG {n} {A} {key} tree orig .(tree ∷ node k1 v1 tree t1 ∷ node _ _ _ (node k1 v1 tree t1) ∷ _) (s-left {_} {_} {t1} {k1} {v1} x (s-right x₁ (s-left x₂ si))) = case2 (case2
    record {  parent = node k1 v1 tree t1 ;  grand = _ ; pg =  s2-s12p refl refl ; rest = _ ; stack=gp = refl } )
stackToPG {n} {A} {key} tree .(node _ _ (node k1 v1 tree t1) _) .(tree ∷ node k1 v1 tree t1 ∷ node _ _ (node k1 v1 tree t1) _ ∷ []) (s-left {_} {_} {t1} {k1} {v1} x (s-left x₁ s-nil)) = case2 (case2
    record {  parent = node k1 v1 tree t1 ;  grand = _ ; pg =  s2-s1p2 refl refl ; rest = _ ; stack=gp = refl } )
stackToPG {n} {A} {key} tree orig .(tree ∷ node k1 v1 tree t1 ∷ node _ _ (node k1 v1 tree t1) _ ∷ _) (s-left {_} {_} {t1} {k1} {v1} x (s-left x₁ (s-right x₂ si))) = case2 (case2
    record {  parent = node k1 v1 tree t1 ;  grand = _ ; pg =  s2-s1p2 refl refl ; rest = _ ; stack=gp = refl } )
stackToPG {n} {A} {key} tree orig .(tree ∷ node k1 v1 tree t1 ∷ node _ _ (node k1 v1 tree t1) _ ∷ _) (s-left {_} {_} {t1} {k1} {v1} x (s-left x₁ (s-left x₂ si))) = case2 (case2
    record {  parent = node k1 v1 tree t1 ;  grand = _ ; pg =  s2-s1p2 refl refl ; rest = _ ; stack=gp = refl } )

stackCase1 : {n : Level} {A : Set n} → {key : ℕ } → {tree orig : bt A }
           →  {stack : List (bt A)} → stackInvariant key tree orig stack
           →  stack ≡ orig ∷ [] → tree ≡ orig
stackCase1 s-nil refl = refl

PGtoRBinvariant : {n : Level} {A : Set n} → {key d0 ds dp dg : ℕ } → (tree orig : bt (Color ∧ A) )
           →  RBtreeInvariant orig d0 
           →  (stack : List (bt (Color ∧ A)))  → (pg : PG (Color ∧ A) tree stack )
           →  RBtreeInvariant tree ds ∧  RBtreeInvariant (PG.parent pg) dp ∧  RBtreeInvariant (PG.grand pg) dg 
PGtoRBinvariant = {!!}

findRBT : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree tree0 : bt (Color ∧ A) ) → (stack : List (bt (Color ∧ A))) → {d d0 : ℕ}
           →  RBtreeInvariant tree0 d0 
           →  RBtreeInvariant tree d ∧ stackInvariant key tree tree0 stack  
           → (next : (tree1 : bt (Color ∧ A)) → (stack : List (bt (Color ∧ A))) → {d1 : ℕ} → RBtreeInvariant tree1 d1 ∧ stackInvariant key tree1 tree0 stack → bt-depth tree1 < bt-depth tree   → t )
           → (exit : (tree1 : bt (Color ∧ A)) → (stack : List (bt (Color ∧ A))) → {d1 : ℕ} → RBtreeInvariant tree1 d1 ∧ stackInvariant key tree1 tree0 stack
                 → (tree1 ≡ leaf ) ∨ ( node-key tree1 ≡ just key )  → t ) → t
findRBT = {!!}

rotateLeft : {n m : Level} {A : Set n} {t : Set m}
     → (key : ℕ) → (value : A) → {d0 : ℕ} 
     → (orig tree rot repl : bt (Color ∧ A)) {d0 : ℕ}
     →  RBtreeInvariant orig d0 
     →  {d : ℕ} → RBtreeInvariant tree d →  {dr : ℕ} → RBtreeInvariant repl dr 
     → (stack : List (bt (Color ∧ A))) → (si : stackInvariant key tree orig stack ) 
     → rotatedTree tree rot
     → {c : Color} → replacedTree key ⟪ c , value ⟫ (child-replaced key rot) repl
     → (next : {key2 d2 : ℕ} {c2 : Color} 
        → (to tr rot rr : bt (Color ∧ A)) 
        →  RBtreeInvariant orig d0 
        →  {d : ℕ} → RBtreeInvariant tree d →  {dr : ℕ} → RBtreeInvariant rr dr 
        → (stack1 : List (bt (Color ∧ A))) → stackInvariant key tr to stack1 
        → rotatedTree tr rot
        → {c : Color} → replacedTree key ⟪ c , value ⟫ (child-replaced key rot) rr
        → length stack1 < length stack  → t )
     → (exit : {k1 d1 : ℕ} {c1 : Color} → (rot repl : bt (Color ∧ A) )
        →  {d : ℕ} → RBtreeInvariant repl d 
        → (ri : rotatedTree orig rot ) → {c : Color} → replacedTree key ⟪ c , value ⟫ rot repl → t ) → t
rotateLeft {n} {m} {A} {t} key value orig tree rot repl rbo rbt rbr stack si ri rr next exit = rotateLeft1 where
    rotateLeft1 : t
    rotateLeft1 with stackToPG tree orig stack si
    ... | case1 x = exit {!!} {!!} {!!} {!!} rr
    ... | case2 (case1 x) = {!!}
    ... | case2 (case2 pg) = {!!}

rotateRight : {n m : Level} {A : Set n} {t : Set m}
     → (key : ℕ) → (value : A) → {d0 : ℕ} 
     → (orig tree rot repl : bt (Color ∧ A)) {d0 : ℕ}
     →  RBtreeInvariant orig d0 
     →  {d : ℕ} → RBtreeInvariant tree d →  {dr : ℕ} → RBtreeInvariant repl dr 
     → (stack : List (bt (Color ∧ A))) → (si : stackInvariant key tree orig stack ) 
     → rotatedTree tree rot
     → {c : Color} → replacedTree key ⟪ c , value ⟫ (child-replaced key rot) repl
     → (next : {key2 d2 : ℕ} {c2 : Color}  
        → (to tr rot rr : bt (Color ∧ A)) 
        →  RBtreeInvariant orig d0 
        →  {d : ℕ} → RBtreeInvariant tree d →  {dr : ℕ} → RBtreeInvariant rr dr 
        → (stack1 : List (bt (Color ∧ A))) → stackInvariant key tr to stack1 
        → rotatedTree tr rot
        → {c : Color} → replacedTree key ⟪ c , value ⟫ (child-replaced key rot) rr
        → length stack1 < length stack  → t )
     → (exit : {k1 d1 : ℕ} {c1 : Color} → (rot repl : bt (Color ∧ A) )
        →  {d : ℕ} → RBtreeInvariant repl d 
        → (ri : rotatedTree orig rot ) → {c : Color} → replacedTree key ⟪ c , value ⟫ rot repl → t ) → t
rotateRight {n} {m} {A} {t} key value orig tree rot repl rbo rbt rbr stack si ri rr next exit = rotateRight1 where
    rotateRight1 : t
    rotateRight1 with stackToPG tree orig stack si
    ... | case1 x = {!!}
    ... | case2 (case1 x) = {!!}
    ... | case2 (case2 pg) = {!!}

insertCase5 : {n m : Level} {A : Set n} {t : Set m}
     → (key : ℕ) → (value : A) → {d0 : ℕ} 
     → (orig tree rot repl : bt (Color ∧ A)) {d0 : ℕ}
     →  RBtreeInvariant orig d0 
     →  {d : ℕ} → RBtreeInvariant tree d →  {dr : ℕ} → RBtreeInvariant repl dr 
     → (stack : List (bt (Color ∧ A))) → (si : stackInvariant key tree orig stack ) 
     → rotatedTree tree rot
     → {c : Color} → replacedTree key ⟪ c , value ⟫ (child-replaced key rot) repl
     → (next : {key2 d2 : ℕ} {c2 : Color}   
        → (to tr rot rr : bt (Color ∧ A)) 
        →  RBtreeInvariant orig d0 
        →  {d : ℕ} → RBtreeInvariant tree d →  {dr : ℕ} → RBtreeInvariant rr dr 
        → (stack1 : List (bt (Color ∧ A))) → stackInvariant key tr to stack1 
        → rotatedTree tr rot
        → {c : Color} → replacedTree key ⟪ c , value ⟫ (child-replaced key rot) rr
        → length stack1 < length stack  → t )
     → (exit : {k1 d1 : ℕ} {c1 : Color} → (rot repl : bt (Color ∧ A) )
        →  {d : ℕ} → RBtreeInvariant repl d 
        → (ri : rotatedTree orig rot ) → {c : Color} → replacedTree key ⟪ c , value ⟫ rot repl → t ) → t
insertCase5 {n} {m} {A} {t} key value orig tree rot repl rbo rbt rbr stack si ri rr next exit = insertCase51 where
    insertCase51 : t
    insertCase51 with stackToPG tree orig stack si
    ... | case1 eq = {!!}
    ... | case2 (case1 eq ) = {!!}
    ... | case2 (case2 pg) with PG.pg pg
    ... | s2-s1p2 x x₁ = rotateRight {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} next exit
       -- x     : PG.parent pg ≡ node kp vp tree n1
       -- x₁    : PG.grand pg ≡ node kg vg (PG.parent pg) (PG.uncle pg)
    ... | s2-1sp2 x x₁ = rotateLeft {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} next exit
    ... | s2-s12p x x₁ = rotateLeft {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} next exit
    ... | s2-1s2p x x₁ = rotateLeft {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} next exit
    -- = insertCase2 tree (PG.parent pg) (PG.uncle pg) (PG.grand pg) stack si (PG.pg pg) 


-- if we have replacedNode on RBTree, we have RBtreeInvariant

replaceRBP : {n m : Level} {A : Set n} {t : Set m}
     → (key : ℕ) → (value : A) 
     → (to tr rot rr : bt (Color ∧ A)) 
     →  {d0 : ℕ} → RBtreeInvariant to d0 
     →  {d  : ℕ} → RBtreeInvariant tr d →  {dr : ℕ} → RBtreeInvariant rr dr 
     → (stack : List (bt (Color ∧ A))) → stackInvariant key tr to stack
     → rotatedTree tr rot
     → {c : Color} → replacedTree key ⟪ c , value ⟫ (child-replaced key rot) rr
     → (next : {key2 d2 : ℕ} {c2 : Color}   
        → (to tr rot rr : bt (Color ∧ A)) 
        →  RBtreeInvariant to d0 
        →  {d : ℕ} → RBtreeInvariant tr d →  {dr : ℕ} → RBtreeInvariant rr dr 
        → (stack1 : List (bt (Color ∧ A))) → stackInvariant key tr to stack1 
        → rotatedTree tr rot
        → {c : Color} → replacedTree key ⟪ c , value ⟫ (child-replaced key rot) rr
        → length stack1 < length stack  → t )
     → (exit : (rot repl : bt (Color ∧ A) )
        →  {d : ℕ} → RBtreeInvariant repl d 
        → (ri : rotatedTree to rot ) → {c : Color} → replacedTree key ⟪ c , value ⟫ (child-replaced key rot) repl → t ) → t
replaceRBP {n} {m} {A} {t} key value orig tree rot repl rbio rbit rbir stack si roti {c} ri next exit = ? where
    insertCase2 : (tree parent uncle grand : bt (Color ∧ A)) 
      → (stack : List (bt (Color ∧ A))) → (si : stackInvariant key tree orig stack ) 
      → (pg : ParentGrand tree parent uncle grand ) → t
    insertCase2 tree leaf uncle grand stack si (s2-s1p2 () x₁) 
    insertCase2 tree leaf uncle grand stack si (s2-1sp2 () x₁) 
    insertCase2 tree leaf uncle grand stack si (s2-s12p () x₁) 
    insertCase2 tree leaf uncle grand stack si (s2-1s2p () x₁) 
    insertCase2 tree parent@(node kp ⟪ Red , _ ⟫ _ _) uncle grand stack si pg = next {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!}
    insertCase2 tree parent@(node kp ⟪ Black , _ ⟫ _ _) leaf grand stack si pg = {!!}
    insertCase2 tree parent@(node kp ⟪ Black , _ ⟫ _ _) (node ku ⟪ Red , _ ⟫ _ _ ) grand stack si pg = next {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!}
    insertCase2 tree parent@(node kp ⟪ Black , _ ⟫ _ _) (node ku ⟪ Black , _ ⟫ _ _) grand stack si (s2-s1p2 x x₁) = 
          insertCase5 key value orig tree {!!} repl rbio {!!} {!!} stack si {!!} ri {!!} {!!} next exit
      -- tree is left of parent, parent is left of grand
      --  node kp ⟪ Black , proj3 ⟫ left right ≡ node kp₁ vp tree n1
      --  grand ≡ node kg vg (node kp ⟪ Black , proj3 ⟫ left right) (node ku ⟪ Black , proj4 ⟫ left₁ right₁)
    insertCase2 tree parent@(node kp ⟪ Black , _ ⟫ _ _) (node ku ⟪ Black , _ ⟫ _ _) grand stack si (s2-1sp2 x x₁) = 
          rotateLeft key value orig tree {!!} repl rbio {!!} {!!} stack si {!!} ri {!!} {!!} 
             (λ a b c d e f h i j k l m  → insertCase5 key value a b c d {!!} {!!} h i j k l {!!} {!!} next exit ) exit
      -- tree is right of parent, parent is left of grand  rotateLeft
      --  node kp ⟪ Black , proj3 ⟫ left right ≡ node kp₁ vp n1 tree
      --  grand ≡ node kg vg (node kp ⟪ Black , proj3 ⟫ left right) (node ku ⟪ Black , proj4 ⟫ left₁ right₁)
    insertCase2 tree parent@(node kp ⟪ Black , _ ⟫ _ _) (node ku ⟪ Black , _ ⟫ _ _) grand stack si (s2-s12p x x₁) = 
          rotateRight key value orig tree {!!} repl rbio {!!} {!!} stack si {!!} ri {!!} {!!} 
             (λ a b c d e f h i j k l m  → insertCase5 key value a b c d {!!} {!!} h i j k l {!!} {!!} next exit ) exit
      -- tree is left of parent, parent is right of grand, rotateRight
      -- node kp ⟪ Black , proj3 ⟫ left right ≡ node kp₁ vp tree n1
      --  grand ≡ node kg vg (node ku ⟪ Black , proj4 ⟫ left₁ right₁) (node kp ⟪ Black , proj3 ⟫ left right)
    insertCase2 tree parent@(node kp ⟪ Black , _ ⟫ _ _) (node ku ⟪ Black , _ ⟫ _ _) grand stack si (s2-1s2p x x₁) = 
          insertCase5 key value orig tree {!!} repl rbio {!!} {!!} stack si {!!} ri {!!} {!!} next exit
      -- tree is right of parent, parent is right of grand
      -- node kp ⟪ Black , proj3 ⟫ left right ≡ node kp₁ vp n1 tree
      -- grand ≡ node kg vg (node ku ⟪ Black , proj4 ⟫ left₁ right₁) (node kp ⟪ Black , proj3 ⟫ left right)
    insertCase1 : t
    insertCase1 with stackToPG tree orig stack si
    ... | case1 eq = exit rot repl rbir (subst (λ k → rotatedTree k rot) (stackCase1 si eq) roti) ri 
    ... | case2 (case1 eq ) = ? where
        insertCase12 : (to : bt (Color ∧ A)) → {d : ℕ} → RBtreeInvariant to d  → to ≡ orig
          → {stack : List (bt (Color ∧ A))} → (si : stackInvariant key tree to stack ) 
          → stack ≡ tree ∷ to ∷ [] → t
        insertCase12 (node k1 ⟪ Red , v1 ⟫ leaf (node k2 ⟪ Black , v2 ⟫ t1 t2)) (rb-right-red x₁ ro) eq (s-right x s-nil) refl = ?
        insertCase12 (node k1 ⟪ Red , v1 ⟫ (node k2 ⟪ Black , v2 ⟫ t1 t2) leaf) (rb-left-red x₁ ro) eq (s-right x s-nil) refl = ?
        insertCase12 (node k1 ⟪ Red , v1 ⟫ (node k2 ⟪ Black , v2 ⟫ t1 t2) (node k3 ⟪ Black , v3 ⟫ t3 t4)) (rb-node-red x₁ x₂ ro ro₁) refl (s-right x s-nil) refl = exit rot1 repl1 ? ins13 ins12 where
             rot1 : bt (Color ∧ A)
             rot1 = node k1 ⟪ Red , v1 ⟫ (node k2 ⟪ Black , v2 ⟫ t1 t2) (node k3 ⟪ Black , v3 ⟫ t3 t4)
             repl1 : bt (Color ∧ A)
             repl1 = ?
             ins12 : replacedTree key ⟪ ? , value ⟫ (child-replaced key rot1) repl1
             ins12 = ?
             ins13 : rotatedTree (node k1 ⟪ Red , v1 ⟫ (node k2 ⟪ Black , v2 ⟫ t1 t2) (node k3 ⟪ Black , v3 ⟫ t3 t4)) rot1
             ins13 = rr-node

        -- exit (node k1 ⟪ Red , v1 ⟫ t1 rot) (node k1 ⟪ Black , v1 ⟫ ? ?) (rb-node-black ? ? ? ?)
        --   (subst₂ (λ j k → rotatedTree j k ) eq ? (rr-right ? rr-node rr-node roti))
        --   (subst (λ k → replacedTree key ⟪ ? , value ⟫ ? ?) ? (r-right ? ri)) 
           -- k1 < key
           --     ⟪ red , k1 ⟫
           --   t1            tree → rot → repl
        insertCase12 (node k1 ⟪ Black , v1 ⟫ leaf leaf) (rb-single k1 v1) eq (s-right x s-nil) refl = ?
        insertCase12 (node k1 ⟪ Black , v1 ⟫ leaf (node _ ⟪ _ , _ ⟫ _ _)) (rb-right-black x₁ ro) eq (s-right x s-nil) refl = ?
        insertCase12 (node k1 ⟪ Black , v1 ⟫ (node _ ⟪ _ , _ ⟫ _ _) leaf) (rb-left-black x₁ ro) eq (s-right x s-nil) refl = ?
        insertCase12 (node k1 ⟪ Black , v1 ⟫ (node _ ⟪ _ , _ ⟫ _ _) (node _ ⟪ _ , _ ⟫ _ _)) (rb-node-black x₁ x₂ ro ro₁) eq (s-right x s-nil) refl = ?
        insertCase12 (node k1 ⟪ Red , v1 ⟫ leaf (node _ ⟪ Black , _ ⟫ _ _)) (rb-right-red x₁ ro) eq (s-left x s-nil) refl = ?
        insertCase12 (node k1 ⟪ Red , v1 ⟫ (node _ ⟪ Black , _ ⟫ _ _) leaf) (rb-left-red x₁ ro) eq (s-left x s-nil) refl = ?
        insertCase12 (node k1 ⟪ Red , v1 ⟫ (node _ ⟪ Black , _ ⟫ _ _) (node _ ⟪ Black , _ ⟫ _ _)) (rb-node-red x₁ x₂ ro ro₁) eq (s-left x s-nil) refl = ?
        insertCase12 (node k1 ⟪ Black , v1 ⟫ leaf leaf) (rb-single k1 v1) eq (s-left x s-nil) refl = ?
        insertCase12 (node k1 ⟪ Black , v1 ⟫ leaf (node _ ⟪ _ , _ ⟫ _ _)) (rb-right-black x₁ ro) eq (s-left x s-nil) refl = ?
        insertCase12 (node k1 ⟪ Black , v1 ⟫ (node _ ⟪ _ , _ ⟫ _ _) leaf) (rb-left-black x₁ ro) eq (s-left x s-nil) refl = ?
        insertCase12 (node k1 ⟪ Black , v1 ⟫ (node _ ⟪ _ , _ ⟫ _ _) (node _ ⟪ _ , _ ⟫ _ _)) (rb-node-black x₁ x₂ ro ro₁) eq (s-left x s-nil) refl = ?
    -- exit rot repl rbir ? ? 
    ... | case2 (case2 pg) = insertCase2 tree (PG.parent pg) (PG.uncle pg) (PG.grand pg) stack si (PG.pg pg)