Mercurial > hg > Members > Moririn
view hoareRedBlackTree.agda @ 585:42e8cf963c5c
Add 'non inductiove record' tree, findT, replaceT, and insertT
author | ryokka |
---|---|
date | Thu, 07 Nov 2019 21:08:14 +0900 |
parents | 7e551cef35d7 |
children | 0ddfa505d612 |
line wrap: on
line source
module hoareRedBlackTree where open import Level hiding (zero) open import Data.Nat hiding (compare) open import Data.Nat.Properties as NatProp open import Data.Maybe open import Data.Maybe.Properties -- open import Data.Bool open import Data.Empty open import Data.List open import Relation.Binary open import Relation.Binary.PropositionalEquality open import Relation.Nullary open import logic record TreeMethods {n m : Level } {a : Set n } {t : Set m } (treeImpl : Set n ) : Set (m Level.⊔ n) where field putImpl : treeImpl → a → (treeImpl → t) → t getImpl : treeImpl → (treeImpl → Maybe a → t) → t open TreeMethods record Tree {n m : Level } {a : Set n } {t : Set m } (treeImpl : Set n ) : Set (m Level.⊔ n) where field tree : treeImpl treeMethods : TreeMethods {n} {m} {a} {t} treeImpl putTree : a → (Tree treeImpl → t) → t putTree d next = putImpl (treeMethods ) tree d (\t1 → next (record {tree = t1 ; treeMethods = treeMethods} )) getTree : (Tree treeImpl → Maybe a → t) → t getTree next = getImpl (treeMethods ) tree (\t1 d → next (record {tree = t1 ; treeMethods = treeMethods} ) d ) open Tree SingleLinkedStack = List emptySingleLinkedStack : {n : Level } {Data : Set n} -> SingleLinkedStack Data emptySingleLinkedStack = [] pushSingleLinkedStack : {n m : Level } {t : Set m } {Data : Set n} -> List Data -> Data -> (Code : SingleLinkedStack Data -> t) -> t pushSingleLinkedStack stack datum next = next ( datum ∷ stack ) popSingleLinkedStack : {n m : Level } {t : Set m } {a : Set n} -> SingleLinkedStack a -> (Code : SingleLinkedStack a -> (Maybe a) -> t) -> t popSingleLinkedStack [] cs = cs [] nothing popSingleLinkedStack (data1 ∷ s) cs = cs s (just data1) data Color {n : Level } : Set n where Red : Color Black : Color record Node {n : Level } (a : Set n) : Set n where inductive field key : ℕ value : a right : Maybe (Node a ) left : Maybe (Node a ) color : Color {n} open Node record RedBlackTree {n : Level } (a : Set n) : Set n where field root : Maybe (Node a ) nodeStack : SingleLinkedStack (Node a ) -- compare : k → k → Tri A B C -- <-cmp open RedBlackTree -- record datum {n : Level} (a : Set n) : Set n where -- field -- key : ℕ -- val : a data BTree {n : Level} (a : Set n) : Set n where leaf : BTree a node : (left : BTree a) → (datum : ℕ) → (right : BTree a) → BTree a findT : {n m : Level } {a : Set n} {t : Set m} → BTree {n} a → ℕ → SingleLinkedStack (BTree a) → (BTree {n} a → SingleLinkedStack (BTree a) → t) → t findT leaf sd st next = next leaf st findT (node ltree datum rtree) sd st next with <-cmp sd datum findT tree@(node ltree datum rtree) sd st next | tri≈ ¬a b ¬c = next tree st findT tree@(node ltree datum rtree) sd st next | tri< a ¬b ¬c = pushSingleLinkedStack st tree (λ st2 → findT ltree sd st2 next) findT tree@(node ltree datum rtree) sd st next | tri> ¬a ¬b c = pushSingleLinkedStack st tree (λ st2 → findT rtree sd st2 next) testTreeType : {n : Level} {a : Set n} → BTree {n} a testTreeType = (node (node leaf 1 leaf) 2 (node leaf 3 leaf)) -- findT testTreeType 44 [] (λ t st → t) -- leaf -- findT testTreeType 44 [] (λ t st → st) -- node leaf 3 leaf ∷ node (node leaf 1 leaf) 2 (node leaf 3 leaf) ∷ [] -- findT testTreeType 3 [] (λ t st → t) -- node leaf 3 leaf -- findT testTreeType 3 [] (λ t st → st) -- node (node leaf 1 leaf) 2 (node leaf 3 leaf) ∷ [] replaceT : {n m : Level } {a : Set n} {t : Set m} → BTree {n} a → ℕ → SingleLinkedStack (BTree a) → (BTree {n} a → t) → t replaceT {n} {m} {a} {t} leaf n0 [] next = next (node leaf n0 leaf) replaceT {n} {m} {a} {t} tree@(node x datum x₁) n0 [] next = next tree replaceT {n} {m} {a} {t} leaf n0 (leaf ∷ rstack) next = replaceT (node leaf n0 leaf) n0 rstack next replaceT {n} {m} {a} {t} leaf n0 (node x datum x₁ ∷ rstack) next with <-cmp n0 datum replaceT {n} {m} {a} {t} leaf n0 (tree@(node x datum x₁) ∷ rstack) next | tri≈ ¬a b ¬c = replaceT tree n0 rstack next replaceT {n} {m} {a} {t} leaf n0 (node x datum x₁ ∷ rstack) next | tri< a₁ ¬b ¬c = replaceT (node (node leaf n0 leaf) datum x₁) n0 rstack next replaceT {n} {m} {a} {t} leaf n0 (node x datum x₁ ∷ rstack) next | tri> ¬a ¬b c = replaceT (node x datum (node leaf n0 leaf)) n0 rstack next replaceT {n} {m} {a} {t} tree@(node ltree datum rtree) n0 (leaf ∷ rstack) next = replaceT tree n0 rstack next -- bad some code replaceT {n} {m} {a} {t} tree@(node ltree datum rtree) n0 ((node x rdatum x₁) ∷ rstack) next with <-cmp datum rdatum replaceT {n} {m} {a} {t} (node ltree datum rtree) n0 (tree@(node x rdatum x₁) ∷ rstack) next | tri≈ ¬a b ¬c = replaceT tree n0 rstack next replaceT {n} {m} {a} {t} tree n0 (node x rdatum x₁ ∷ rstack) next | tri< a₁ ¬b ¬c = replaceT (node tree rdatum x₁) n0 rstack next replaceT {n} {m} {a} {t} tree n0 (node x rdatum x₁ ∷ rstack) next | tri> ¬a ¬b c = replaceT (node x rdatum tree) n0 rstack next insertT : {n m : Level } {a : Set n} {t : Set m} → BTree {n} a → ℕ → SingleLinkedStack (BTree a) → (BTree {n} a → t) → t insertT tree n0 st next = findT tree n0 st ( λ new st2 → replaceT new n0 st2 next ) c1 : {n : Level} {a : Set n} → BTree {n} a c1 = insertT leaf 1 [] (λ t → insertT t 3 [] (λ t → insertT t 5 [] (λ t → insertT t 7 [] (λ t → t)))) c2 : {n : Level} {a : Set n} → BTree {n} a c2 = insertT leaf 5 [] (λ t → insertT t 3 [] (λ t → insertT t 1 [] (λ t → insertT t 7 [] (λ t → t)))) getkey : {n : Level } {a : Set n} → BTree {n} a → Maybe ℕ getkey leaf = nothing getkey (node tree₁ datum tree₂) = just datum find-insert : {n m : Level } {a : Set n} {t : Set m} → (any : BTree {n} a) → (key : ℕ) → insertT any key [] (λ x → findT x key [] (λ return _ → (just key ≡ (getkey {n} return)))) find-insert leaf key with <-cmp key key find-insert leaf key | tri< a ¬b ¬c = ⊥-elim (¬c a ) find-insert leaf key | tri≈ ¬a b ¬c = refl find-insert leaf key | tri> ¬a ¬b c = ⊥-elim (¬a c ) find-insert tr@(node any₁ datum any₂) key with <-cmp key datum find-insert (node any₁ datum any₂) key | tri< a ¬b ¬c = {!!} find-insert (node any₁ datum any₂) key | tri> ¬a ¬b c = {!!} find-insert (node any₁ datum any₂) key | tri≈ ¬a b ¬c with <-cmp key datum find-insert (node any₁ datum any₂) key | tri≈ ¬a b ¬c | tri< a ¬b ¬c₁ = {!!} find-insert (node any₁ datum any₂) key | tri≈ ¬a b ¬c | tri> ¬a₁ ¬b c = {!!} find-insert (node any₁ datum any₂) key | tri≈ ¬a b ¬c | tri≈ ¬a₁ b₁ ¬c₁ = {!!} -- where -- find-lemma : {n m : Level} {a : Set n} {t : Set m} → BTree a → ℕ → SingleLinkedStack (BTree a) → (BTree a → SingleLinkedStack (BTree a) → t) → t -- find-lemma leaf ke st nt = nt leaf st -- find-lemma (node tr datum tr₁) ke st nt with <-cmp ke datum -- find-lemma tt@(node tr datum tr₁) ke st nt | tri< a ¬b ¬c = find-lemma tr ke (tt ∷ st) nt -- find-lemma tt@(node tr datum tr₁) ke st nt | tri≈ ¬a b ¬c = nt tt st -- find-lemma tt@(node tr datum tr₁) ke st nt | tri> ¬a ¬b c = find-lemma tr₁ ke (tt ∷ st) nt ---- -- find node potition to insert or to delete, the path will be in the stack -- {-# TERMINATING #-} findNode : {n m : Level } {a : Set n} {t : Set m} → RedBlackTree {n} a → (Node a ) → (RedBlackTree {n} a → t) → t findNode {n} {m} {a} {t} tree n0 next with root tree findNode {n} {m} {a} {t} tree n0 next | nothing = next tree findNode {n} {m} {a} {t} tree n0 next | just x with <-cmp (key x) (key n0) findNode {n} {m} {a} {t} tree n0 next | just x | tri≈ ¬a b ¬c = next tree findNode {n} {m} {a} {t} tree n0 next | just x | tri< a₁ ¬b ¬c = pushSingleLinkedStack (nodeStack tree) x (λ s → findNode (record {root = (left x) ; nodeStack = s}) n0 next) findNode {n} {m} {a} {t} tree n0 next | just x | tri> ¬a ¬b c = pushSingleLinkedStack (nodeStack tree) x (λ s → findNode (record {root = (right x) ; nodeStack = s}) n0 next) findNode1 : {n m : Level } {a : Set n} {t : Set m} → RedBlackTree {n} a → (Node a ) → (RedBlackTree {n} a → t) → t findNode1 {n} {m} {a} {t} tree n0 next = findNode2 (root tree) (nodeStack tree) module FindNode where findNode2 : (Maybe (Node a )) → SingleLinkedStack (Node a ) → t findNode2 nothing st = next record { root = nothing ; nodeStack = st } findNode2 (just x) st with <-cmp (key n0) (key x) ... | tri≈ ¬a b ¬c = next (record {root = just x ; nodeStack = st }) ... | tri< a ¬b ¬c = pushSingleLinkedStack st x (λ s1 → findNode2 (right x) s1) ... | tri> ¬a ¬b c = pushSingleLinkedStack st x (λ s1 → findNode2 (left x) s1) node001 : Node ℕ node001 = record { key = 2 ; value = 3 ; left = nothing ; right = nothing ; color = Black } node002 : Node ℕ node002 = record { key = 1 ; value = 3 ; left = just node001 ; right = nothing ; color = Black } node003 : Node ℕ node003 = record { key = 0 ; value = 3 ; left = just node002 ; right = nothing ; color = Black } test001 = findNode1 {Level.zero} {Level.zero} {ℕ} {RedBlackTree ℕ} ( record { root = nothing ; nodeStack = emptySingleLinkedStack } ) node001 ( λ tree → tree ) test002 = findNode1 {Level.zero} {Level.zero} {ℕ} {RedBlackTree ℕ} ( record { root = just node001 ; nodeStack = emptySingleLinkedStack } ) node001 ( λ tree → tree ) test003 = findNode1 {Level.zero} {Level.zero} {ℕ} {RedBlackTree ℕ} ( record { root = just node003 ; nodeStack = emptySingleLinkedStack } ) node001 ( λ tree → tree ) test004 = findNode {Level.zero} {Level.zero} {ℕ} {RedBlackTree ℕ} ( record { root = just node003 ; nodeStack = emptySingleLinkedStack } ) node001 ( λ tree → tree ) replaceNode : {n m : Level } {a : Set n} {t : Set m} → RedBlackTree {n} a → (Node a ) → (RedBlackTree {n} a → t) → t replaceNode {n} {m} {a} {t} tree n0 next = replaceNode2 (nodeStack tree) (λ newNode → next record { root = just newNode ; nodeStack = emptySingleLinkedStack } ) module FindNodeR where replaceNode1 : (Maybe (Node a )) → Node a replaceNode1 nothing = record n0 { left = nothing ; right = nothing } replaceNode1 (just x) = record n0 { left = left x ; right = right x } replaceNode2 : SingleLinkedStack (Node a ) → (Node a → t) → t replaceNode2 [] next = next ( replaceNode1 (root tree) ) replaceNode2 (x ∷ st) next with <-cmp (key x) (key n0) replaceNode2 (x ∷ st) next | tri< a ¬b ¬c = replaceNode2 st ( λ new → next ( record x { left = left new } ) ) replaceNode2 (x ∷ st) next | tri≈ ¬a b ¬c = replaceNode2 st ( λ new → next ( record x { left = left new ; right = right new } ) ) replaceNode2 (x ∷ st) next | tri> ¬a ¬b c = replaceNode2 st ( λ new → next ( record x { right = right new } ) ) insertNode : {n m : Level } {a : Set n} {t : Set m} → RedBlackTree {n} a → (Node a ) → (RedBlackTree {n} a → t) → t insertNode tree n0 next = findNode1 tree n0 ( λ new → replaceNode tree n0 next ) createEmptyRedBlackTreeℕ : {n m : Level} {t : Set m} (a : Set n) (b : ℕ) → RedBlackTree {n} a createEmptyRedBlackTreeℕ a b = record { root = nothing ; nodeStack = emptySingleLinkedStack } findNodeLeft : {n : Level } {a : Set n} (r : Node a ) (t : SingleLinkedStack (Node a)) → Set n findNodeLeft x [] = (left x ≡ nothing ) ∧ (right x ≡ nothing ) findNodeLeft {n} x (h ∷ t) = Lift n ((key x) < (key h)) -- stack の top と比較するのはたぶん replace ...? findNodeRight : {n : Level } {a : Set n} (r : Node a ) (t : SingleLinkedStack (Node a)) → Set n findNodeRight x [] = (left x ≡ nothing ) ∧ (right x ≡ nothing ) findNodeRight {n} x (h ∷ t) = Lift n ((key x) > (key h)) findNodeLoop : {n : Level } {a : Set n} (r : Node a ) (t : SingleLinkedStack (Node a)) → Set n findNodeLoop x st = ((findNodeRight x st) ∨ (findNodeLeft x st)) data FindNodeInvariant {n : Level } {a : Set n} : (t : SingleLinkedStack (Node a)) (original : RedBlackTree {n} a ) → Set n where fni-stackEmpty : (now : RedBlackTree {n} a ) → FindNodeInvariant [] now fni-treeEmpty : (st : SingleLinkedStack (Node a)) → FindNodeInvariant st record { root = nothing ; nodeStack = st } fni-Left : (x : Node a) (st : SingleLinkedStack (Node a)) (original : RedBlackTree {n} a ) → FindNodeInvariant ( x ∷ st ) original → findNodeLeft x st → FindNodeInvariant st original fni-Right : (x : Node a) (st : SingleLinkedStack (Node a)) (original : RedBlackTree {n} a ) → FindNodeInvariant ( x ∷ st ) original → findNodeRight x st → FindNodeInvariant st original -- fni-loop : (x : Node a) (st : SingleLinkedStack (Node a)) (original : RedBlackTree {n} a ) → FindNodeInvariant st original findNode1h : {n m : Level } {a : Set n} {t : Set m} → (tree : RedBlackTree {n} a ) → (Node a ) → ((new : RedBlackTree {n} a) → FindNodeInvariant (nodeStack new) tree → t ) → ( FindNodeInvariant (nodeStack tree) tree) → t findNode1h {n} {m} {a} {t} tree n0 next prev = findNode2h (root tree) (nodeStack tree) n0 prev module FindNodeH where findNode2h : (Maybe (Node a )) → (s : SingleLinkedStack (Node a )) → Node a → FindNodeInvariant s tree → t findNode2h nothing st n0 prev = next record { root = nothing ; nodeStack = st } prev findNode2h (just x) st n0 prev with <-cmp (key n0) (key x) ... | tri≈ ¬lt eq ¬gt = next (record {root = just x ; nodeStack = st }) {!!} -- ( fni-Last ? ) ... | tri< lt ¬eq ¬gt = pushSingleLinkedStack st x (λ s1 → findNode2h (left x) s1 n0 (fni-Left x s1 tree ({!!}) (lproof x s1 )) ) where nextInvaliant : ({!!}) nextInvaliant = {!!} lproof : (x : Node a) → (s1 : SingleLinkedStack (Node a)) → findNodeLeft x s1 --→ (n0 : Node a) lproof ns [] with left ns | right ns lproof ns [] | just x | just x₁ = {!!} lproof ns [] | just x | nothing = {!!} lproof ns [] | nothing | just x = {!!} lproof ns [] | nothing | nothing = {!!} lproof ns (x ∷ ss) = {!!} ... | tri> ¬lt ¬eq gt = pushSingleLinkedStack st x (λ s1 → findNode2h (right x) s1 n0 (fni-Right x s1 tree ({!!}) {!!}) ) -- replaceNodeH : {n m : Level } {a : Set n} {t : Set m} → RedBlackTree {n} a → (Node a ) → (RedBlackTree {n} a → {!!} → t) → {!!} → t -- replaceNodeH = {!!}