Mercurial > hg > Members > Moririn
view src/parallel_execution/RedBlackTree.cbc @ 476:4b5f9884b777
add rbTreeTest remove
author | ryokka |
---|---|
date | Thu, 28 Dec 2017 15:02:23 +0900 |
parents | e5f0cced7d43 |
children |
line wrap: on
line source
#include <stdio.h> #include "../context.h" #interface "Tree.h" #interface "Stack.h" #include "compare.c" extern enum Relational compare(struct Node* node1, struct Node* node2); Tree* createRedBlackTree(struct Context* context) { struct Tree* tree = new Tree(); struct RedBlackTree* redBlackTree = new RedBlackTree(); tree->tree = (union Data*)redBlackTree; redBlackTree->root = NULL; redBlackTree->nodeStack = createSingleLinkedStack(context); tree->put = C_putRedBlackTree; tree->get = C_getRedBlackTree; tree->remove = C_removeRedBlackTree; // tree->clear = C_clearRedBlackTree; return tree; } void printTree1(union Data* data) { struct Node* node = &data->Node; if (node == NULL) { printf("NULL"); } else { printf("key = %d (", node->key); printTree1((union Data*)(node->right)); printf("), ("); printTree1((union Data*)(node->left)); printf(")"); } } void printTree(union Data* data) { printTree1(data); printf("\n"); } __code putRedBlackTree(struct RedBlackTree* tree, struct Node* node) { struct Node* newNode = &ALLOCATE(context, Node)->Node; struct Node* root = tree->root; printTree((union Data*)(tree->root)); tree->newNode = newNode; tree->root = newNode; // this should done at stackClear tree->parent = NULL; if (root) { tree->current = root; tree->result = compare(tree->current, node); tree->findNodeNext = C_insertNode; goto findNode(tree); } goto insertNode(tree, node); } __code findNode(struct RedBlackTree* tree) { struct Stack* nodeStack = tree->nodeStack; struct Node* oldNode = tree->current; struct Node* newNode = tree->newNode; tree->previous = newNode; *newNode = *oldNode; goto nodeStack->push((union Data*)newNode, findNode1); } __code findNode1(struct RedBlackTree* tree, struct Node* node, __code next(...)) { struct Node* oldNode = tree->current; struct Node* newNode = tree->previous; struct Node* newnewNode = &ALLOCATE(context, Node)->Node; int result = tree->result; if (result == EQ) { newNode->value = node->value; // go to stack clear goto next(...); } else if (result == GT) { tree->current = oldNode->right; newNode->right = newnewNode; } else { tree->current = oldNode->left; newNode->left = newnewNode; } tree->newNode = newnewNode; if (tree->current) { tree->result = compare(tree->current, node); goto findNode(tree); } goto meta(context, tree->findNodeNext); // gato tree->findNodeNext(tree, node); } __code insertNode(struct RedBlackTree* tree, struct Node* node) { struct Stack* nodeStack = tree->nodeStack; struct Node* newNode = tree->newNode; *newNode = *node; newNode->color = Red; tree->current = newNode; goto nodeStack->get2(insertCase1); } __code insertCase1(struct RedBlackTree* tree, struct Node *parent, struct Node *grandparent) { if (parent != NULL) { tree->parent = parent; tree->grandparent = grandparent; goto insertCase2(tree); } tree->root->color = Black; goto stackClear(); } __code insertCase1_stub(struct Context* context) { goto insertCase1(context, &Gearef(context, Tree)->tree->Tree.tree->RedBlackTree, &context->data[D_Stack]->Stack.data->Node, &context->data[D_Stack]->Stack.data1->Node); } __code insertCase2(struct RedBlackTree* tree) { if (tree->parent->color == Black) { goto stackClear(); } goto insertCase3(tree); } __code insertCase3(struct RedBlackTree* tree) { struct Stack* nodeStack = tree->nodeStack; struct Node* uncle; if (tree->grandparent->left == tree->parent) uncle = tree->grandparent->right; else uncle = tree->grandparent->left; if (uncle && (uncle->color == Red)) { // do insertcase1 on grandparent, stack must be pop by two tree->parent->color = Black; uncle->color = Black; tree->grandparent->color = Red; tree->current = tree->grandparent; goto nodeStack->pop2(insertCase1); } goto insertCase4(); } __code insertCase4(struct RedBlackTree* tree, struct RotateTree* rotateTree) { struct Stack* nodeStack = tree->nodeStack; if ((tree->current == tree->parent->right) && (tree->parent == tree->grandparent->left)) { tree->current = tree->current->left; tree->parent = tree->grandparent; rotateTree->traverse = tree; rotateTree->next = C_insertCase5; goto nodeStack->pop(rotateLeft); } else if ((tree->current == tree->parent->left) && (tree->parent == tree->grandparent->right)) { tree->parent = tree->grandparent; tree->current = tree->current->right; rotateTree->traverse = tree; rotateTree->next = C_insertCase5; goto nodeStack->pop(rotateRight); } goto insertCase5(); } __code insertCase5(struct RedBlackTree* tree) { struct Stack* nodeStack = tree->nodeStack; goto nodeStack->pop2(insertCase51); } __code insertCase51(struct RedBlackTree* tree, struct RotateTree* rotateTree, struct Node* parent, struct Node* grandparent) { struct Node* current = tree->current; tree->parent = parent; tree->grandparent = grandparent; parent->color = Black; grandparent->color = Red; tree->current = grandparent; rotateTree->traverse = tree; rotateTree->next = C_stackClear; if ((current == parent->left) && (parent == grandparent->left)) goto rotateRight(); else goto rotateLeft(); } __code insertCase51_stub(struct Context* context) { struct Node* parent = &context->data[D_Stack]->Stack.data->Node; struct Node* grandparent = &context->data[D_Stack]->Stack.data1->Node; goto insertCase51(context, &Gearef(context, Tree)->tree->Tree.tree->RedBlackTree, Gearef(context, RotateTree), parent, grandparent); } __code rotateLeft(struct RedBlackTree* tree) { struct Stack* nodeStack = tree->nodeStack; goto nodeStack->get(rotateLeft1); } __code rotateLeft_stub(struct Context* context) { struct RedBlackTree* traverse = context->data[D_RotateTree]->RotateTree.traverse; goto rotateLeft(context, traverse); } __code rotateLeft1(struct Node* node, struct RedBlackTree* tree, struct Node* parent, struct RotateTree* rotateTree) { struct Node* tmp = node->right; if (parent) { if (node == parent->left) parent->left = tmp; else parent->right = tmp; } else { tree->root = tmp; } node->right = tmp->left; tmp->left = node; tree->current = tmp; goto meta(context, rotateTree->next); } __code rotateLeft1_stub(struct Context* context) { struct RedBlackTree* traverse = context->data[D_RotateTree]->RotateTree.traverse; struct Node* parent = &context->data[D_Stack]->Stack.data->Node; goto rotateLeft1(context, traverse->current, traverse, parent, Gearef(context, RotateTree)); } __code rotateRight(struct RedBlackTree* tree) { struct Stack* nodeStack = tree->nodeStack; goto nodeStack->get(rotateRight1); } __code rotateRight_stub(struct Context* context) { struct RedBlackTree* traverse = context->data[D_RotateTree]->RotateTree.traverse; goto rotateLeft(context, traverse); } __code rotateRight1(struct Node* node, struct RedBlackTree* traverse,struct Node *parent,struct RotateTree *rotateTree) { struct Node* tmp = node->left; if (parent) { if (node == parent->left) parent->left = tmp; else parent->right = tmp; } else { traverse->root = tmp; } node->left = tmp->right; tmp->right = node; traverse->current = tmp; goto meta(context, rotateTree->next); } __code rotateRight1_stub(struct Context* context) { struct RedBlackTree* traverse = context->data[D_RotateTree]->RotateTree.traverse; struct Node* parent = &context->data[D_Stack]->Stack.data->Node; goto rotateRight1(context, traverse->current, traverse, parent, Gearef(context, RotateTree)); } __code stackClear(struct RedBlackTree* tree, struct Stack* nodeStack, __code next(...)) { tree->current = 0; nodeStack->stack = (union Data*)tree->nodeStack; nodeStack->next = next; goto meta(context, tree->nodeStack->clear); } __code getRedBlackTree(struct RedBlackTree* tree, __code next(...)) { if (tree->root) { tree->current = tree->root; goto search(); } goto next(...); } __code search(struct RedBlackTree* tree, struct Node* node, __code next(...)) { // compare(context, traverse, traverse->current->key, node->key); tree->result = compare(tree->current, node); if (tree->result == EQ) { *node = *tree->current; goto meta(context, next); } else if (tree->result == GT) { tree->current = tree->current->right; } else { tree->current = tree->current->left; } if (tree->current) goto meta(context, C_search); goto next(...); } __code removeRedBlackTree(struct RedBlackTree* tree, struct Node* node, __code next(...)) { struct Node* newNode = &ALLOCATE(context, Node)->Node; struct Node* root = tree->root; printTree((union Data*)(tree->root)); tree->newNode = newNode; tree->root = newNode; // this should done at stackClear tree->parent = NULL; if (root) { tree->current = root; tree->result = compare(tree->current, node); tree->findNodeNext = C_replaceNodeForDelete2; goto findNode(tree); } goto next(...); } __code delete2(struct Node* current) { if (current->color == Black) { struct Node* child = current->right == NULL ? current->left : current->right; current->color = child == NULL ? Black : child->color; goto deleteCase1(current); } goto delete3(tree, current); } __code delete3(struct RedBlackTree* tree, struct Node* current, __code next(...)) { struct Node* tmp = current->right == NULL ? current->left : current->right; struct Stack* nodeStack = tree->nodeStack; if (tree->parent) { if (current == tree->parent->left) tree->parent->left = tmp; else tree->parent->right = tmp; } else { tree->root = tmp; } if (tree->parent == NULL && tmp) tmp->color = Black; current == tree->parent->left ? (tree->parent->left = NULL) : (tree->parent->right = NULL); Gearef(context, Stack)->stack = (union Data*) nodeStack; Gearef(context, Stack)->next = next; goto meta(context, nodeStack->pop); // gato nodeStack->pop(next); } __code replaceNodeForDelete2(struct RedBlackTree* tree, struct Node* newNode) { if (tree->current->left && tree->current->right) { tree->parent = newNode; tree->current = newNode->left; newNode->left = context->heap; tree->parent = newNode; goto findMax1(tree,oldNode, newNode); } goto delete2(current); } __code findMax1(struct RedBlackTree* tree, struct Node* oldNode, struct Node* newNode) { *newNode = *oldNode; if (newNode->right) goto findMax2(tree, oldNode, newNode); tree->current = newNode; goto delete2(current); } __code findMax2(struct RedBlackTree* tree, struct Node* oldNode, struct Node* newNode) { *newNode = *oldNode; if (newNode->right->right) { tree->current = newNode->right; newNode->right = context->heap; tree->parent = newNode; goto findMax2(tree, oldNode, newNode); } tree->current = newNode; goto delete2(tree,current); } __code deleteCase1(struct RedBlackTree* tree, struct Node* current) { if (tree->parent) goto deleteCase2(tree,current); goto delete3(tree, current); } __code deleteCase2(struct RedBlackTree* tree, struct Node* current, struct RotateTree* rotateTree) { struct Node* sibling = current == tree->parent->left ? tree->parent->right : tree->parent->left; struct Stack* nodeStack = tree->nodeStack; if ((sibling == NULL ? Black : sibling->color) == Red) { tree->parent->color = Red; sibling->color = Black; current == tree->parent->left ? (tree->parent->left = context->heap) : (tree->parent->right = context->heap); struct Node* node = sibling; tree->current = tree->parent; rotateTree->traverse = tree; rotateTree->next = C_deleteCase3; if (current == tree->parent->left) { goto nodeStack->push((union Data*)node,rotateLeft); } else { goto nodeStack->push((union Data*)node,rotateRight); } goto deleteCase3(tree,current); } } __code deleteCase3(struct RedBlackTree* tree, struct Node* current) { struct Node* sibling = current == tree->parent->left ? tree->parent->right : tree->parent->left; if (tree->parent->color == Black && (sibling == NULL ? Black : sibling->color) == Black && (sibling->left == NULL ? Black : sibling->left->color) == Black && (sibling->right == NULL ? Black : sibling->right->color) == Black) { sibling->color = Red; tree->current = tree->parent; goto deleteCase1(current); } goto deleteCase4(current); } __code deleteCase4(struct RedBlackTree* tree,struct Node* current) { struct Node* sibling = current == tree->parent->left ? tree->parent->right : tree->parent->left; if (tree->parent->color == Red && (sibling == NULL ? Black : sibling->color) == Black && (sibling->left == NULL ? Black : sibling->left->color) == Black && (sibling->right == NULL ? Black : sibling->right->color) == Black) { sibling->color = Red; tree->parent->color = Black; goto delete3(tree,current); } goto deleteCase5(tree,current); } __code deleteCase5(struct RedBlackTree* tree, struct Node* current, struct RotateTree* rotateTree) { struct Node* sibling = current == tree->parent->left ? tree->parent->right : tree->parent->left; struct Stack* nodeStack = tree->nodeStack; // sibling->parent = tree->parent; if (current == tree->parent->left && (sibling == NULL ? Black : sibling->color) == Black && (sibling->left == NULL ? Black : sibling->left->color) == Red && (sibling->right == NULL ? Black : sibling->right->color) == Black) { sibling->color = Red; sibling->left->color = Black; // sibling == sibling->parent->left ? (sibling->parent->left = context->heap) : (sibling->parent->right = context->heap); sibling == tree->parent->left ? (tree->parent->left = context->heap) : (tree->parent->right = context->heap); struct Node* node = new Node(); node = sibling->left; struct Node* tmp = node; *tmp = *sibling; tree->parent = current; tmp->left = context->heap; /* struct Node* node = new Node(); */ /* node = *sibling->left; */ tree->parent = tmp; tree->current = tmp; rotateTree->traverse = tree; rotateTree->next = C_deleteCase6; goto nodeStack->push((union Data*)node,rotateRight); } else if (current == tree->parent->right && (sibling == NULL ? Black : sibling->color) == Black && (sibling->left == NULL ? Black : sibling->left->color) == Black && (sibling->right == NULL ? Black : sibling->right->color) == Red) { sibling->color = Red; sibling->right->color = Black; sibling == tree->parent->left ? (tree->parent->left = context->heap) : (tree->parent->right = context->heap); struct Node* node = new Node(); node = sibling->right; struct Node* tmp = node; *tmp = *sibling; // tmp->parent = current; tmp->right = context->heap; /* struct Node* node = new Node(); */ /* node = *sibling->right; */ //node->parent = tmp; tree->current = tmp; rotateTree->traverse = tree; rotateTree->next = C_deleteCase6; goto nodeStack->push((union Data*)node,rotateLeft); } goto deleteCase6(tree,current); } __code deleteCase6(struct RedBlackTree* tree, struct Node* current, struct RotateTree* rotateTree) { struct Node* sibling = current == tree->parent->left ? tree->parent->right : tree->parent->left; struct Stack* nodeStack = tree->nodeStack; sibling == tree->parent->left ? (tree->parent->left = context->heap) : (tree->parent->right = context->heap); struct Node* tmp = sibling; // *tmp = *sibling; tree->parent = current; tmp->color = tree->parent->color; tree->parent->color = Black; if (current == tree->parent->left) { tmp->right->color = Black; tree->current = tree->parent; rotateTree->traverse = tree; rotateTree->next = C_delete3; goto nodeStack->push((union Data*)tmp,rotateLeft); } else { tmp->left->color = Black; tree->current = tree->parent; rotateTree->traverse = tree; rotateTree->next = C_delete3; goto nodeStack->push((union Data*)tmp,rotateLeft); } }