Mercurial > hg > Members > Moririn
view src/parallel_execution/CUDAExecutor.cbc @ 462:8d7e5d48cad3
Running CPU examples
author | Tatsuki IHA <innparusu@cr.ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 20 Dec 2017 22:05:08 +0900 |
parents | dcc42f3e7e97 |
children | 7d67c9cf09ee |
line wrap: on
line source
#include "../context.h" #include <stdio.h> Executor* createCUDAExecutor(struct Context* context, CUdevice device) { struct Executor* executor = new Executor(); struct CUDAExecutor* cudaExecutor = new CUDAExecutor(); checkCudaErrors(cuDeviceGetAttribute(&cudaExecutor->maxThreadPerBlock, CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_BLOCK, device)); executor->executor = (union Data*)cudaExecutor; executor->read = C_readCUDAExecutor; executor->exec = C_execCUDAExecutor; executor->write = C_writeCUDAExecutor; return executor; } __code readCUDAExecutor(struct CUDAExecutor* executor, struct Context* task, __code next(...)) { struct CUDABuffer* buffer = executor->buffer; int paramLen = buffer->inputLen + buffer->outputLen; executor->kernelParams = (CUdeviceptr**)ALLOCATE_PTR_ARRAY(context, CUdeviceptr, paramLen); for (int i = 0; i < paramLen; i++) { CUdeviceptr* deviceptr = new CUdeviceptr(); // memory allocate union Data* data = i < buffer->inputLen? buffer->inputData[i] : buffer->outputData[i-buffer->inputLen]; checkCudaErrors(cuMemAlloc(deviceptr, GET_SIZE(data))); checkCudaErrors(cuMemcpyHtoD(*deviceptr, data, GET_SIZE(data))); // Synchronous data transfer(host to device) executor->kernelParams[i] = deviceptr; } // TODO: Implements pipeline // goto next(...); goto meta(context, C_execCUDAExecutor); } int computeblockDim(int count, int maxThreadPerBlock) { return count < maxThreadPerBlock ? count : maxThreadPerBlock; } __code execCUDAExecutor(struct CUDAExecutor* executor, struct Context* task, __code next(...)) { // Asynchronous launch kernel task->num_exec = 1; if (task->iterate) { struct MultiDimIterator* iterator = &task->iterator->iterator->MultiDimIterator; int blockDimX = computeblockDim(iterator->x, executor->maxThreadPerBlock); int blockDimY = computeblockDim(iterator->y, executor->maxThreadPerBlock); int blockDimZ = computeblockDim(iterator->z, executor->maxThreadPerBlock); checkCudaErrors(cuLaunchKernel(task->function, iterator->x/blockDimX, iterator->y/blockDimY, iterator->z/blockDimZ, blockDimX, blockDimY, blockDimZ, 0, NULL, (void**)executor->kernelParams, NULL)); } else { checkCudaErrors(cuLaunchKernel(task->function, 1, 1, 1, 1, 1, 1, 0, NULL, (void**)executor->kernelParams, NULL)); } // TODO: Implements pipeline // goto next(...); goto meta(context, C_writeCUDAExecutor); } __code writeCUDAExecutor(struct CUDAExecutor* executor, struct Context* task, __code next(...)) { //結果を取ってくるコマンドを入力する //コマンドの終了待ちを行う struct CUDABuffer* buffer = executor->buffer; int paramLen = buffer->inputLen + buffer->outputLen; for (int i = 0; i < paramLen; i++) { CUdeviceptr deviceptr = *(executor->kernelParams[i]); union Data* data = i < buffer->inputLen? buffer->inputData[i] : buffer->outputData[i-buffer->inputLen]; checkCudaErrors(cuMemcpyDtoH(data, deviceptr, GET_SIZE(data))); cuMemFree(deviceptr); } // wait for stream checkCudaErrors(cuCtxSynchronize()); goto next(...); }