Mercurial > hg > Members > Moririn
view hoareBinaryTree.agda @ 605:f8cc98fcc34b
define invariant
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 03 Nov 2021 15:58:10 +0900 |
parents | 2075785a124a |
children | 61a0491a627b |
line wrap: on
line source
module hoareBinaryTree where open import Level renaming (zero to Z ; suc to succ) open import Data.Nat hiding (compare) open import Data.Nat.Properties as NatProp open import Data.Maybe -- open import Data.Maybe.Properties open import Data.Empty open import Data.List open import Data.Product open import Function as F hiding (const) open import Relation.Binary open import Relation.Binary.PropositionalEquality open import Relation.Nullary open import logic _iso_ : {n : Level} {a : Set n} → ℕ → ℕ → Set d iso d' = (¬ (suc d ≤ d')) ∧ (¬ (suc d' ≤ d)) iso-intro : {n : Level} {a : Set n} {x y : ℕ} → ¬ (suc x ≤ y) → ¬ (suc y ≤ x) → _iso_ {n} {a} x y iso-intro = λ z z₁ → record { proj1 = z ; proj2 = z₁ } -- -- -- no children , having left node , having right node , having both -- data bt {n : Level} (A : Set n) : Set n where leaf : bt A node : (key : ℕ) → (value : A) → (left : bt A ) → (write : bt A ) → bt A find : {n : Level} {A : Set n} {t : Set n} → (key : ℕ) → (tree : bt A ) → List (bt A) → (next : bt A → List (bt A) → t ) → (exit : bt A → List (bt A) → t ) → t find key leaf st _ exit = exit leaf st find key (node key₁ v tree tree₁) st next exit with <-cmp key key₁ find key n st _ exit | tri≈ ¬a b ¬c = exit n st find key n@(node key₁ v tree tree₁) st next _ | tri< a ¬b ¬c = next tree (n ∷ st) find key n@(node key₁ v tree tree₁) st next _ | tri> ¬a ¬b c = next tree₁ (n ∷ st) {-# TERMINATING #-} find-loop : {n : Level} {A : Set n} {t : Set n} → (key : ℕ) → bt A → List (bt A) → (exit : bt A → List (bt A) → t) → t find-loop {_} {A} {t} key tree st exit = find-loop1 tree st where find-loop1 : bt A → List (bt A) → t find-loop1 tree st = find key tree st find-loop1 exit replace : {n : Level} {A : Set n} {t : Set n} → (key : ℕ) → (value : A) → bt A → List (bt A) → (next : ℕ → A → bt A → List (bt A) → t ) → (exit : bt A → t) → t replace key value tree [] next exit = exit tree replace key value tree (leaf ∷ st) next exit = next key value tree st replace key value tree (node key₁ value₁ left right ∷ st) next exit with <-cmp key key₁ ... | tri< a ¬b ¬c = next key value (node key₁ value₁ tree right ) st ... | tri≈ ¬a b ¬c = next key value (node key₁ value left right ) st ... | tri> ¬a ¬b c = next key value (node key₁ value₁ left tree ) st {-# TERMINATING #-} replace-loop : {n : Level} {A : Set n} {t : Set n} → (key : ℕ) → (value : A) → bt A → List (bt A) → (exit : bt A → t) → t replace-loop {_} {A} {t} key value tree st exit = replace-loop1 key value tree st where replace-loop1 : (key : ℕ) → (value : A) → bt A → List (bt A) → t replace-loop1 key value tree st = replace key value tree st replace-loop1 exit insertTree : {n : Level} {A : Set n} {t : Set n} → (tree : bt A) → (key : ℕ) → (value : A) → (next : bt A → t ) → t insertTree tree key value exit = find-loop key tree [] ( λ t st → replace-loop key value t st exit ) insertTest1 = insertTree leaf 1 1 (λ x → x ) open import Data.Unit hiding ( _≟_ ; _≤?_ ; _≤_) treeInvariant : {n : Level} {A : Set n} → (tree : bt A) → Set treeInvariant leaf = ⊤ treeInvariant (node key value leaf leaf) = ⊤ treeInvariant (node key value leaf n@(node key₁ value₁ t₁ t₂)) = (key < key₁) ∧ treeInvariant n treeInvariant (node key value n@(node key₁ value₁ t t₁) leaf) = treeInvariant n ∧ (key < key₁) treeInvariant (node key value n@(node key₁ value₁ t t₁) m@(node key₂ value₂ t₂ t₃)) = treeInvariant n ∧ (key < key₁) ∧ (key₁ < key₂) ∧ treeInvariant m treeInvariantTest1 = treeInvariant (node 3 0 leaf (node 1 1 leaf (node 3 5 leaf leaf))) stackInvariant : {n : Level} {A : Set n} → (stack : List (bt A)) → Set n stackInvariant {_} {A} [] = Lift _ ⊤ stackInvariant {_} {A} (leaf ∷ stack) = Lift _ ⊤ stackInvariant {_} {A} (node key value leaf leaf ∷ []) = Lift _ ⊤ stackInvariant {_} {A} (node key value _ (node _ _ _ _) ∷ []) = Lift _ ⊥ stackInvariant {_} {A} (node key value (node _ _ _ _) _ ∷ []) = Lift _ ⊥ stackInvariant {_} {A} (x ∷ node key value leaf leaf ∷ tail ) = Lift _ ⊥ stackInvariant {_} {A} (x ∷ tail @ (node key value leaf tree ∷ _) ) = (tree ≡ x) ∧ stackInvariant tail stackInvariant {_} {A} (x ∷ tail @ (node key value tree leaf ∷ _) ) = (tree ≡ x) ∧ stackInvariant tail stackInvariant {_} {A} (x ∷ tail @ (node key value left right ∷ _ )) = ( (left ≡ x) ∧ stackInvariant tail) ∨ ( (right ≡ x) ∧ stackInvariant tail) stackInvariant {_} {A} s = Lift _ ⊥