# HG changeset patch # User Shinji KONO <kono@ie.u-ryukyu.ac.jp> # Date 1636071698 -32400 # Node ID db42d1033857f08cdc429ab8cca07acf8f3f4a65 # Parent 8239583dac0b7837897c8abfb1c4d753a546d468 ... diff -r 8239583dac0b -r db42d1033857 hoareBinaryTree.agda --- a/hoareBinaryTree.agda Thu Nov 04 23:52:05 2021 +0900 +++ b/hoareBinaryTree.agda Fri Nov 05 09:21:38 2021 +0900 @@ -47,10 +47,14 @@ {-# TERMINATING #-} find-loop : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → bt A → List (bt A) → (exit : bt A → List (bt A) → t) → t -find-loop {_} {_} {A} {t} key tree st exit = find-loop1 tree st where +find-loop {n} {m} {A} {t} key tree st exit = find-loop1 tree st where find-loop1 : bt A → List (bt A) → t find-loop1 tree st = find key tree st find-loop1 exit +replaceNode : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → bt A → (bt A → t) → t +replaceNode k v leaf next = next (node k v leaf leaf) +replaceNode k v (node key value t t₁) next = next (node k v t t₁) + replace : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → bt A → List (bt A) → (next : ℕ → A → bt A → List (bt A) → t ) → (exit : bt A → t) → t replace key value tree [] next exit = exit tree replace key value tree (leaf ∷ st) next exit = next key value tree st @@ -66,9 +70,10 @@ replace-loop1 key value tree st = replace key value tree st replace-loop1 exit insertTree : {n m : Level} {A : Set n} {t : Set m} → (tree : bt A) → (key : ℕ) → (value : A) → (next : bt A → t ) → t -insertTree tree key value exit = find-loop key tree [] ( λ t st → replace-loop key value t st exit ) +insertTree tree key value exit = find-loop key tree [] $ λ t st → replaceNode key value t $ λ t1 → replace-loop key value t1 st exit insertTest1 = insertTree leaf 1 1 (λ x → x ) +insertTest2 = insertTree insertTest1 2 1 (λ x → x ) open import Data.Unit hiding ( _≟_ ; _≤?_ ; _≤_) @@ -89,6 +94,14 @@ stackInvariant {_} {A} tree (x ∷ tail @ (node key value left right ∷ _ )) = ( (left ≡ x) ∧ stackInvariant tree tail) ∨ ( (right ≡ x) ∧ stackInvariant tree tail) stackInvariant {_} {A} tree s = Lift _ ⊥ +rstackInvariant : {n : Level} {A : Set n} → (tree : bt A) → (stack : List (bt A)) → Set n +rstackInvariant {_} {A} _ [] = Lift _ ⊤ +rstackInvariant {_} {A} tree (tree1 ∷ [] ) = tree1 ≡ tree +rstackInvariant {_} {A} tree (node key value leaf right ∷ x ∷ y ) = (right ≡ x) ∧ rstackInvariant tree (x ∷ y) +rstackInvariant {_} {A} tree (node key value left leaf ∷ x ∷ y ) = (left ≡ x) ∧ rstackInvariant tree (x ∷ y) +rstackInvariant {_} {A} tree (node key value left right ∷ x ∷ y ) = ( (left ≡ x) ∧ rstackInvariant tree (x ∷ y)) ∨ ( (right ≡ x) ∧ rstackInvariant tree (x ∷ y)) +rstackInvariant {_} {A} tree s = Lift _ ⊥ + findP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree : bt A ) → (stack : List (bt A)) → treeInvariant tree ∧ stackInvariant tree stack → (next : (tree1 : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant tree1 stack → bt-depth tree1 < bt-depth tree → t ) @@ -99,17 +112,21 @@ findP key n@(node key₁ v tree tree₁) st Pre next _ | tri< a ¬b ¬c = next tree (n ∷ st) {!!} {!!} findP key n@(node key₁ v tree tree₁) st Pre next _ | tri> ¬a ¬b c = next tree₁ (n ∷ st) {!!} {!!} +replaceNodeP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → (tree : bt A) → (treeInvariant tree ) + → ((tree : bt A) → treeInvariant tree → (rstack : List (bt A)) → rstackInvariant tree rstack → t) → t +replaceNodeP k v leaf P next = next (node k v leaf leaf) {!!} {!!} {!!} +replaceNodeP k v (node key value t t₁) P next = next (node k v t t₁) {!!} {!!} {!!} replaceP : {n m : Level} {A : Set n} {t : Set m} - → (key : ℕ) → (value : A) → (tree : bt A) → (stack rstack : List (bt A)) → treeInvariant tree ∧ stackInvariant tree stack - → (next : ℕ → A → (tree1 : bt A) → (stack rstack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant tree stack ∧ stackInvariant tree1 rstack → bt-depth tree1 < bt-depth tree → t ) - → (exit : (tree1 : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant tree1 stack → t) → t -replaceP key value tree [] rs Pre next exit = exit tree {!!} {!!} -replaceP key value tree (leaf ∷ st) rs Pre next exit = next key value tree st {!!} {!!} {!!} -replaceP key value tree (node key₁ value₁ left right ∷ st) rs Pre next exit with <-cmp key key₁ -... | tri< a ¬b ¬c = next key value (node key₁ value₁ tree right ) st {!!} {!!} {!!} -... | tri≈ ¬a b ¬c = next key value (node key₁ value left right ) st {!!} {!!} {!!} -... | tri> ¬a ¬b c = next key value (node key₁ value₁ left tree ) st {!!} {!!} {!!} + → (key : ℕ) → (value : A) → (tree repl : bt A) → (stack rstack : List (bt A)) → treeInvariant tree ∧ stackInvariant tree stack ∧ rstackInvariant tree rstack + → (next : ℕ → A → (tree1 repl : bt A) → (stack rstack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant tree1 stack ∧ rstackInvariant repl rstack → bt-depth tree1 < bt-depth tree → t ) + → (exit : (tree1 repl : bt A) → (rstack : List (bt A)) → treeInvariant tree1 ∧ rstackInvariant repl rstack → t) → t +replaceP key value tree repl [] rs Pre next exit = exit tree repl {!!} {!!} +replaceP key value tree repl (leaf ∷ st) rs Pre next exit = next key value tree repl st {!!} {!!} {!!} +replaceP key value tree repl (node key₁ value₁ left right ∷ st) rs Pre next exit with <-cmp key key₁ +... | tri< a ¬b ¬c = next key value (node key₁ value₁ tree right ) repl st {!!} {!!} {!!} +... | tri≈ ¬a b ¬c = next key value (node key₁ value left right ) repl st {!!} {!!} {!!} +... | tri> ¬a ¬b c = next key value (node key₁ value₁ left tree ) repl st {!!} {!!} {!!} open import Relation.Binary.Definitions @@ -135,13 +152,16 @@ open _∧_ -insertTreeP : {n m : Level} {A : Set n} {t : Set m} → (tree : bt A) → (key : ℕ) → (value : A) → treeInvariant tree → (exit : (tree : bt A) → (stack : List (bt A)) → treeInvariant tree ∧ stackInvariant tree stack → t ) → t +insertTreeP : {n m : Level} {A : Set n} {t : Set m} → (tree : bt A) → (key : ℕ) → (value : A) → treeInvariant tree + → (exit : (tree repl : bt A) → (rstack : List (bt A)) → treeInvariant tree ∧ rstackInvariant repl rstack → t ) → t insertTreeP {n} {m} {A} {t} tree key value P exit = - TerminatingLoopS (bt A ∧ List (bt A) ∧ List (bt A)) {λ p → treeInvariant (proj1 p) ∧ stackInvariant (proj1 p) (proj1 (proj2 p)) ∧ {!!} } (λ p → bt-depth (proj1 p)) ⟪ tree , ⟪ [] , {!!} ⟫ ⟫ ⟪ P , ⟪ lift tt , {!!} ⟫ ⟫ - (λ p P loop → findP key (proj1 p) (proj1 (proj2 p)) {!!} (λ t s P1 lt → loop ⟪ t , ⟪ s , {!!} ⟫ ⟫ {!!} lt ) - (λ t s P → TerminatingLoopS (bt A ∧ List (bt A) ∧ bt A) {λ p → treeInvariant (proj1 p) ∧ stackInvariant (proj1 p) (proj1 (proj2 p))} (λ p → bt-depth (proj1 p)) ⟪ t , ⟪ s , {!!} ⟫ ⟫ P - (λ p P1 loop → replaceP key value (proj1 p) (proj1 (proj2 p)) {!!} P1 (λ k v t s s1 P2 lt → loop ⟪ t , ⟪ s , {!!} ⟫ ⟫ {!!} {!!} ) exit) - ) ) + TerminatingLoopS (bt A ∧ List (bt A) ) {λ p → treeInvariant (proj1 p) ∧ stackInvariant (proj1 p) (proj2 p) } (λ p → bt-depth (proj1 p)) ⟪ tree , [] ⟫ ⟪ P , lift tt ⟫ + $ λ p P loop → findP key (proj1 p) (proj2 p) P (λ t s P1 lt → loop ⟪ t , s ⟫ P1 lt ) + $ λ t s P → replaceNodeP key value t (proj1 P) + $ λ t1 P1 r R → TerminatingLoopS (bt A ∧ List (bt A) ∧ List (bt A)) + {λ p → treeInvariant (proj1 p) ∧ stackInvariant (proj1 p) (proj1 (proj2 p)) ∧ rstackInvariant t1 (proj2 (proj2 p))} + (λ p → bt-depth (proj1 p)) ⟪ t , ⟪ s , r ⟫ ⟫ ⟪ proj1 P , ⟪ proj2 P , R ⟫ ⟫ + $ λ p P1 loop → replaceP key value (proj1 p) {!!} (proj1 (proj2 p)) (proj2 (proj2 p)) {!!} (λ k v t repl s s1 P2 lt → loop ⟪ t , ⟪ {!!} , s1 ⟫ ⟫ {!!} {!!} ) exit top-value : {n : Level} {A : Set n} → (tree : bt A) → Maybe A top-value leaf = nothing @@ -152,5 +172,5 @@ insertTreeSpec1 : {n : Level} {A : Set n} → (tree : bt A) → (key : ℕ) → (value : A) → treeInvariant tree → ⊤ insertTreeSpec1 {n} {A} tree key value P = - insertTreeP tree key value P (λ (tree₁ : bt A) (stack : List (bt A)) - (P1 : treeInvariant tree₁ ∧ stackInvariant tree₁ stack ) → insertTreeSpec0 tree₁ value {!!} ) + insertTreeP tree key value P (λ (tree₁ repl : bt A) (rstack : List (bt A)) + (P1 : treeInvariant tree₁ ∧ rstackInvariant repl rstack ) → insertTreeSpec0 tree₁ value {!!} )