# HG changeset patch # User Shinji KONO <kono@ie.u-ryukyu.ac.jp> # Date 1637028539 -32400 # Node ID e0bea7a2bb4d423d49ad065efcf0660a5fe053dd # Parent 5fe23f5407261a9e070aaa7ecaa7cbc0a4686841 ... diff -r 5fe23f540726 -r e0bea7a2bb4d hoareBinaryTree.agda --- a/hoareBinaryTree.agda Mon Nov 15 17:04:13 2021 +0900 +++ b/hoareBinaryTree.agda Tue Nov 16 11:08:59 2021 +0900 @@ -151,6 +151,13 @@ si-property-last t t0 (.t ∷ x ∷ st) (s-left si) with si-property1 _ _ (x ∷ st) si ... | refl = si-property-last x t0 (x ∷ st) si +stackTreeInvariant : {n : Level} {A : Set n} (repl tree : bt A) → (stack : List (bt A)) + → treeInvariant tree → stackInvariant repl tree stack → treeInvariant repl +stackTreeInvariant repl .repl (.repl ∷ .[]) ti (s-single .repl) = ti +stackTreeInvariant repl leaf (.repl ∷ st) ti (s-right si) = {!!} +stackTreeInvariant repl (node key value tree tree₁) (.repl ∷ st) ti (s-right si) = {!!} +stackTreeInvariant repl tree (.repl ∷ st) ti (s-left si) = {!!} + rt-property1 : {n : Level} {A : Set n} (key : ℕ) (value : A) (tree tree1 : bt A ) → replacedTree key value tree tree1 → ¬ ( tree1 ≡ leaf ) rt-property1 {n} {A} key value .leaf .(node key value leaf leaf) r-leaf () rt-property1 {n} {A} key value .(node key _ _ _) .(node key value _ _) r-node () @@ -218,7 +225,15 @@ ... | refl | t1 = ⊥-elim ( t1 refl ) replaceP key value tree repl (node key₁ value₁ left right ∷ st) Pre next exit with <-cmp key key₁ ... | tri< a ¬b ¬c = next key value (node key₁ value₁ tree right ) (node key₁ value₁ repl right ) st {!!} ≤-refl -... | tri≈ ¬a b ¬c = next key value (node key₁ value left right )(node key₁ value₁ left right ) st {!!} ≤-refl +... | tri≈ ¬a b ¬c = exit (node key₁ value₁ left right ) (node key₁ value left right ) ⟪ repl1 , repl3 ⟫ where + Pre1 : treeInvariant tree ∧ stackInvariant repl tree (node key₁ value₁ left right ∷ st) ∧ replacedTree key value tree repl + Pre1 = Pre + repleq : repl ≡ node key₁ value₁ left right + repleq = {!!} + repl1 : treeInvariant (node key₁ value₁ left right) + repl1 = {!!} + repl3 : replacedTree key value (node key₁ value₁ left right) (node key₁ value left right) + repl3 = subst (λ k → replacedTree k value (node key₁ value₁ left right) (node key₁ value left right) ) (sym b) r-node ... | tri> ¬a ¬b c = next key value (node key₁ value₁ left tree ) (node key₁ value₁ left repl )st {!!} ≤-refl open import Relation.Binary.Definitions