Mercurial > hg > Members > Moririn
changeset 571:1eccf1f18a59
add more detail
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 27 Apr 2018 19:19:40 +0900 |
parents | a6aa2ff5fea4 |
children | eb75d9971451 |
files | redBlackTreeTest.agda |
diffstat | 1 files changed, 29 insertions(+), 10 deletions(-) [+] |
line wrap: on
line diff
--- a/redBlackTreeTest.agda Thu Apr 26 20:09:55 2018 +0900 +++ b/redBlackTreeTest.agda Fri Apr 27 19:19:40 2018 +0900 @@ -148,6 +148,9 @@ ... | yes refl = refl ... | no neq = ⊥-elim ( neq refl ) +--- search -> checkEQ +--- findNode -> search + putTest1 :{ m : Level } (n : Maybe (Node ℕ ℕ)) → (k : ℕ) (x : ℕ) → putTree1 {_} {_} {ℕ} {ℕ} (redBlackInSomeState {_} ℕ n {Set Level.zero}) k x @@ -160,15 +163,32 @@ lemma2 : (s : SingleLinkedStack (Node ℕ ℕ) ) → findNode (tree0 s) s (leafNode k x) n1 (λ tree1 s n1 → replaceNode tree1 s n1 (λ t → getRedBlackTree t k (λ t x1 → checkT x1 x ≡ True))) lemma2 s with compTri k (key n1) - ... | tri≈ le refl gt = {!!} -- lemma3 + ... | tri≈ le refl gt = lemma5 s where - lemma3 : getRedBlackTree {_} {_} {ℕ} {ℕ} {Set Level.zero} ( record { root = Just ( record { - key = key n1 ; value = x ; right = right n1 ; left = left n1 ; color = Black - } ) ; nodeStack = s ; compare = λ x₁ y → compareT x₁ y } ) k ( λ t x1 → checkT x1 x ≡ True) - lemma3 with compTri k k - ... | tri≈ _ refl _ = checkEQ x _ refl - ... | tri< _ neq _ = ⊥-elim (neq refl) - ... | tri> _ neq _ = ⊥-elim (neq refl) + open stack.SingleLinkedStack + open stack.Element + lemma6 : (s : SingleLinkedStack (Node ℕ ℕ) ) → (n2 : Element (Node ℕ ℕ) ) + → ReplaceNode.replaceNode1 (tree0 s) s (record n1 { key = k ; value = x } ) (λ t → + GetRedBlackTree.checkNode t (key n1) (λ t₁ x1 → checkT x1 x ≡ True) (root t)) + (record { top = Element.next n2 }) (Just (Element.datum n2)) + lemma6 s n2 with (top s ) + ... | Just n3 with compTri (key (datum n2)) (key (datum n3)) + ... | tri< _ neq _ = {!!} -- lemma6 ( record {top = next n3} ) {!!} + ... | tri> _ neq _ = {!!} -- lemma6 ( record {top = next n3} ) {!!} + ... | tri≈ _ eq _ = {!!} + lemma6 s n2 | Nothing = {!!} + lemma5 : (s : SingleLinkedStack (Node ℕ ℕ) ) → popSingleLinkedStack ( record { top = Just (cons n1 (SingleLinkedStack.top s)) } ) + ( \ s1 _ -> (replaceNode (tree0 s1) s1 (record n1 { key = k ; value = x } ) (λ t → + GetRedBlackTree.checkNode t (key n1) (λ t₁ x1 → checkT x1 x ≡ True) (root t))) ) + lemma5 s with (top s) + ... | Just n2 with compTri k k + ... | tri< _ neq _ = ⊥-elim (neq refl) + ... | tri> _ neq _ = ⊥-elim (neq refl) + ... | tri≈ _ refl _ = lemma6 s n2 + lemma5 s | Nothing with compTri k k + ... | tri≈ _ refl _ = checkEQ x _ refl + ... | tri< _ neq _ = ⊥-elim (neq refl) + ... | tri> _ neq _ = ⊥-elim (neq refl) ... | tri> le eq gt = {!!} ... | tri< le eq gt = {!!} lemma0 : clearSingleLinkedStack (record {top = Nothing}) (\s → findNode (tree0 s) s (leafNode k x) n1 (λ tree1 s n1 → replaceNode tree1 s n1 @@ -177,8 +197,7 @@ ... | Nothing = lemma1 where lemma1 : getRedBlackTree {_} {_} {ℕ} {ℕ} {Set Level.zero} ( record { root = Just ( record { - key = k ; value = x ; right = Nothing ; left = Nothing ; color = Red - } ) ; nodeStack = record { top = Nothing } ; compare = λ x₁ y → compareT x₁ y } ) k + key = k ; value = x ; right = Nothing ; left = Nothing ; color = Red } ) ; nodeStack = record { top = Nothing } ; compare = λ x₁ y → compareT x₁ y } ) k ( λ t x1 → checkT x1 x ≡ True) lemma1 with compTri k k ... | tri≈ _ refl _ = checkEQ x _ refl