Mercurial > hg > Members > Moririn
changeset 573:8777baeb90f8
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 06 May 2018 19:35:38 +0900 |
parents | eb75d9971451 |
children | 70b09cbefd45 |
files | Todo.txt redBlackTreeTest.agda |
diffstat | 2 files changed, 41 insertions(+), 14 deletions(-) [+] |
line wrap: on
line diff
--- a/Todo.txt Fri Apr 27 19:53:44 2018 +0900 +++ b/Todo.txt Sun May 06 19:35:38 2018 +0900 @@ -1,9 +1,19 @@ +Sun May 6 17:54:50 JST 2018 + + do1 a $ \b -> do2 b next を、do1 と do2 に分離することはできる? + + +Mon Apr 30 17:15:16 JST 2018 + + Stack の初期化を別にするだけだと、置き換えの条件に到達した時に、Stack が empty になるのを保証できない + やはり、 Stack + Current Tree = Original Tree という不変式を入れないとだめらしい + Mon Mar 26 17:43:06 JST 2018 - Decidable を使って Compare の場合分けを行う + Decidable を使って Compare の場合分けを行う Decidable を使うと Eq から x ≡ y の証明を取り出すことができる 場合分けには Trichotomous を使う - compareTri を完成させる + compareTri を完成させる Done Fri Jan 5 16:43:26 JST 2018
--- a/redBlackTreeTest.agda Fri Apr 27 19:53:44 2018 +0900 +++ b/redBlackTreeTest.agda Sun May 06 19:35:38 2018 +0900 @@ -151,7 +151,27 @@ --- search -> checkEQ --- findNode -> search -putTest1 :{ m : Level } (n : Maybe (Node ℕ ℕ)) +open stack.SingleLinkedStack +open stack.Element + +{-# TERMINATING #-} +inStack : {l : Level} (n : Node ℕ ℕ) (s : SingleLinkedStack (Node ℕ ℕ) ) → Bool {l} +inStack n s with ( top s ) +... | Nothing = True +... | Just n1 with compTri (key n) (key (datum n1)) +... | tri> _ neq _ = inStack n ( record { top = next n1 } ) +... | tri< _ neq _ = inStack n ( record { top = next n1 } ) +... | tri≈ _ refl _ = False + +record StackTreeInvariant ( n : Node ℕ ℕ ) + ( s : SingleLinkedStack (Node ℕ ℕ) ) ( t : RedBlackTree ℕ ℕ ) : Set where + field + sti : replaceNode t s n $ λ t1 → getRedBlackTree t1 (key n) (λ t2 x1 → checkT x1 (value n) ≡ True) + notInStack : inStack n s ≡ True → ⊥ + +open StackTreeInvariant + +putTest1 : (n : Maybe (Node ℕ ℕ)) → (k : ℕ) (x : ℕ) → putTree1 {_} {_} {ℕ} {ℕ} (redBlackInSomeState {_} ℕ n {Set Level.zero}) k x (λ t → getRedBlackTree t k (λ t x1 → checkT x1 x ≡ True)) @@ -160,32 +180,29 @@ where tree0 : (s : SingleLinkedStack (Node ℕ ℕ) ) → RedBlackTree ℕ ℕ tree0 s = record { root = Just n1 ; nodeStack = s ; compare = compareT } - -- we should develop findNode/replaceNode/getRedBlackTree all at once - lemma2 : (s : SingleLinkedStack (Node ℕ ℕ) ) → findNode (tree0 s) s (leafNode k x) n1 (λ tree1 s n1 → replaceNode tree1 s n1 + lemma2 : (s : SingleLinkedStack (Node ℕ ℕ) ) → StackTreeInvariant (leafNode k x) s (tree0 s) + → findNode (tree0 s) s (leafNode k x) n1 (λ tree1 s n1 → replaceNode tree1 s n1 (λ t → getRedBlackTree t k (λ t x1 → checkT x1 x ≡ True))) - lemma2 s with compTri k (key n1) + lemma2 s STI with compTri k (key n1) ... | tri≈ le refl gt = lemma5 s ( tree0 s ) n1 where - open stack.SingleLinkedStack - open stack.Element - lemma5 : (s : SingleLinkedStack (Node ℕ ℕ) ) → ( t : RedBlackTree ℕ ℕ ) → ( n : Node ℕ ℕ ) - → popSingleLinkedStack ( record { top = Just (cons n (SingleLinkedStack.top s)) } ) + lemma5 : (s : SingleLinkedStack (Node ℕ ℕ) ) → ( t : RedBlackTree ℕ ℕ ) → ( n : Node ℕ ℕ ) → popSingleLinkedStack ( record { top = Just (cons n (SingleLinkedStack.top s)) } ) ( \ s1 _ -> (replaceNode (tree0 s1) s1 (record n1 { key = k ; value = x } ) (λ t → GetRedBlackTree.checkNode t (key n1) (λ t₁ x1 → checkT x1 x ≡ True) (root t))) ) lemma5 s t n with (top s) - ... | Just n2 with compTri k k + ... | Just n2 with compTri k k ... | tri< _ neq _ = ⊥-elim (neq refl) ... | tri> _ neq _ = ⊥-elim (neq refl) - ... | tri≈ _ refl _ = lemma5 {!!} {!!} {!!} + ... | tri≈ _ refl _ = ⊥-elim ( (notInStack STI) {!!} ) lemma5 s t n | Nothing with compTri k k ... | tri≈ _ refl _ = checkEQ x _ refl ... | tri< _ neq _ = ⊥-elim (neq refl) ... | tri> _ neq _ = ⊥-elim (neq refl) - ... | tri> le eq gt = {!!} + ... | tri> le eq gt = sti ( record { sti = {!!} ; notInStack = {!!} } ) ... | tri< le eq gt = {!!} lemma0 : clearSingleLinkedStack (record {top = Nothing}) (\s → findNode (tree0 s) s (leafNode k x) n1 (λ tree1 s n1 → replaceNode tree1 s n1 (λ t → getRedBlackTree t k (λ t x1 → checkT x1 x ≡ True)))) - lemma0 = lemma2 (record {top = Nothing}) + lemma0 = lemma2 (record {top = Nothing}) ( record { sti = {!!} ; notInStack = {!!} } ) ... | Nothing = lemma1 where lemma1 : getRedBlackTree {_} {_} {ℕ} {ℕ} {Set Level.zero} ( record { root = Just ( record {