Mercurial > hg > Members > Moririn
changeset 705:fa0feb3c7adf
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 05 Dec 2021 23:18:38 +0900 |
parents | aad148b5037d |
children | 2eedafdd95a6 |
files | hoareBinaryTree.agda |
diffstat | 1 files changed, 11 insertions(+), 12 deletions(-) [+] |
line wrap: on
line diff
--- a/hoareBinaryTree.agda Sun Dec 05 18:57:23 2021 +0900 +++ b/hoareBinaryTree.agda Sun Dec 05 23:18:38 2021 +0900 @@ -242,22 +242,22 @@ treeRightDown {n} {A} {_} {v1} .(node _ _ _ _) .(node _ _ _ _) (t-node x x₁ ti ti₁) = ti₁ -record findCond {n : Level} {A : Set n} {C : ℕ → bt A → Set n} ( key : ℕ ) (tree : bt A) : Set (suc n) where +record FindCond {n : Level} {A : Set n} (C : ℕ → bt A → Set n) : Set (Level.suc n) where field - c1 : {key₁ : ℕ} } {v1 : A } { tree₀ tree₁ : bt A } → C key (node key₁ v1 tree tree₁) → key < key₁ → C key tree - c2 : {key₁ : ℕ} } {v1 : A } { tree₀ tree₁ : bt A } → C key (node key₁ v1 tree tree₁) → key > key₁ → C key tree + c1 : {key key₁ : ℕ} {v1 : A } { tree tree₁ : bt A } → C key (node key₁ v1 tree tree₁) → key < key₁ → C key tree + c2 : {key key₁ : ℕ} {v1 : A } { tree tree₁ : bt A } → C key (node key₁ v1 tree tree₁) → key > key₁ → C key tree₁ findP0 : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree : bt A ) → (stack : List (bt A)) - → {C : ℕ → bt A → Set n} → C key tree + → {C : ℕ → bt A → Set n} → C key tree → FindCond C → (next : (tree1 : bt A) → (stack : List (bt A)) → C key tree1 → bt-depth tree1 < bt-depth tree → t ) → (exit : (tree1 : bt A) → (stack : List (bt A)) → C key tree1 → (tree1 ≡ leaf ) ∨ ( node-key tree1 ≡ just key ) → t ) → t -findP0 key leaf st Pre _ exit = exit leaf st Pre (case1 refl) -findP0 key (node key₁ v1 tree tree₁) st Pre next exit with <-cmp key key₁ -findP0 key n st Pre _ exit | tri≈ ¬a refl ¬c = exit n st Pre (case2 refl) -findP0 {n} {_} {A} key (node key₁ v1 tree tree₁) st Pre next _ | tri< a ¬b ¬c = next tree (tree ∷ st) {!!} depth-1< -findP0 key n@(node key₁ v1 tree tree₁) st Pre next _ | tri> ¬a ¬b c = next tree₁ (tree₁ ∷ st) {!!} depth-2< +findP0 key leaf st Pre _ _ exit = exit leaf st Pre (case1 refl) +findP0 key (node key₁ v1 tree tree₁) st Pre _ next exit with <-cmp key key₁ +findP0 key n st Pre e _ exit | tri≈ ¬a refl ¬c = exit n st Pre (case2 refl) +findP0 {n} {_} {A} key (node key₁ v1 tree tree₁) st Pre e next _ | tri< a ¬b ¬c = next tree (tree ∷ st) (FindCond.c1 e Pre a) depth-1< +findP0 key n@(node key₁ v1 tree tree₁) st Pre e next _ | tri> ¬a ¬b c = next tree₁ (tree₁ ∷ st) (FindCond.c2 e Pre c) depth-2< findP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree tree0 : bt A ) → (stack : List (bt A)) → treeInvariant tree ∧ stackInvariant key tree tree0 stack @@ -271,7 +271,6 @@ ⟪ treeLeftDown tree tree₁ (proj1 Pre) , findP1 a st (proj2 Pre) ⟫ depth-1< where findP1 : key < key₁ → (st : List (bt A)) → stackInvariant key (node key₁ v1 tree tree₁) tree0 st → stackInvariant key tree tree0 (tree ∷ st) findP1 a (x ∷ st) si = s-left a si - findP key n@(node key₁ v1 tree tree₁) tree0 st Pre next _ | tri> ¬a ¬b c = next tree₁ (tree₁ ∷ st) ⟪ treeRightDown tree tree₁ (proj1 Pre) , s-right c (proj2 Pre) ⟫ depth-2< replaceTree1 : {n : Level} {A : Set n} {t t₁ : bt A } → ( k : ℕ ) → (v1 value : A ) → treeInvariant (node k v1 t t₁) → treeInvariant (node k value t t₁) @@ -438,7 +437,7 @@ child-replaced key tree1 ∎ where open ≡-Reasoning repl12 : replacedTree key value (child-replaced key tree1 ) (node key₁ value₁ repl right) repl12 = subst (λ k → replacedTree key value k (node key₁ value₁ repl right) ) repl04 (r-left a (replacePR.ri Pre)) -... | tri≈ ¬a b ¬c = next key value (node key₁ value left right ) st Post ≤-refl where -- can't happen +... | tri≈ ¬a b ¬c = next key value (node key₁ value left right ) st Post ≤-refl where Post : replacePR key value tree1 (node key₁ value left right ) (tree1 ∷ st1) (λ _ _ _ → Lift n ⊤) Post with replacePR.si Pre ... | s-right {_} {_} {tree₁} {key₂} {v1} x si = record { tree0 = replacePR.tree0 Pre ; ti = replacePR.ti Pre ; si = repl10 ; ri = repl12 b ; ci = lift tt } where @@ -628,7 +627,7 @@ findPP key (node key₁ v1 tree tree₁) st Pre _ next exit with <-cmp key key₁ findPP key n st Pre _ _ exit | tri≈ ¬a refl ¬c = exit n st Pre (case2 refl) findPP {n} {_} {A} key (node key₁ v1 tree tree₁) st Pre e next _ | tri< a ¬b ¬c = next tree (tree ∷ st) - record { tree0 = findPR.tree0 Pre ; ti0 = findPR.ti0 Pre ; ti = treeLeftDown tree tree₁ (findPR.ti Pre) ; si = findP1 a st (findPR.si Pre) ; ci = findExt.c1 e Pre a } depth-1< where -- findPR key (node key₁ v1 tree tree₁) st C → key < key₁ → C tree (tree ∷ st) + record { tree0 = findPR.tree0 Pre ; ti0 = findPR.ti0 Pre ; ti = treeLeftDown tree tree₁ (findPR.ti Pre) ; si = findP1 a st (findPR.si Pre) ; ci = findExt.c1 e Pre a } depth-1< where findP1 : key < key₁ → (st : List (bt A)) → stackInvariant key (node key₁ v1 tree tree₁) (findPR.tree0 Pre) st → stackInvariant key tree (findPR.tree0 Pre) (tree ∷ st) findP1 a (x ∷ st) si = s-left a si