Mercurial > hg > Members > anatofuz > MoarVM
comparison 3rdparty/libtommath/tommath.h @ 0:2cf249471370
convert mercurial for git
author | Takahiro SHIMIZU <anatofuz@cr.ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 08 May 2018 16:09:12 +0900 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:2cf249471370 |
---|---|
1 /* LibTomMath, multiple-precision integer library -- Tom St Denis | |
2 * | |
3 * LibTomMath is a library that provides multiple-precision | |
4 * integer arithmetic as well as number theoretic functionality. | |
5 * | |
6 * The library was designed directly after the MPI library by | |
7 * Michael Fromberger but has been written from scratch with | |
8 * additional optimizations in place. | |
9 * | |
10 * The library is free for all purposes without any express | |
11 * guarantee it works. | |
12 * | |
13 * Tom St Denis, tstdenis82@gmail.com, http://math.libtomcrypt.com | |
14 */ | |
15 #ifndef BN_H_ | |
16 #define BN_H_ | |
17 | |
18 #include <stdio.h> | |
19 #include <stdlib.h> | |
20 #include <stdint.h> | |
21 #include <limits.h> | |
22 | |
23 #include <tommath_class.h> | |
24 | |
25 #ifdef __cplusplus | |
26 extern "C" { | |
27 #endif | |
28 | |
29 /* detect 64-bit mode if possible */ | |
30 #if defined(__x86_64__) | |
31 #if !(defined(MP_32BIT) || defined(MP_16BIT) || defined(MP_8BIT)) | |
32 #define MP_64BIT | |
33 #endif | |
34 #endif | |
35 | |
36 /* some default configurations. | |
37 * | |
38 * A "mp_digit" must be able to hold DIGIT_BIT + 1 bits | |
39 * A "mp_word" must be able to hold 2*DIGIT_BIT + 1 bits | |
40 * | |
41 * At the very least a mp_digit must be able to hold 7 bits | |
42 * [any size beyond that is ok provided it doesn't overflow the data type] | |
43 */ | |
44 #ifdef MP_8BIT | |
45 typedef uint8_t mp_digit; | |
46 typedef uint16_t mp_word; | |
47 #define MP_SIZEOF_MP_DIGIT 1 | |
48 #ifdef DIGIT_BIT | |
49 #error You must not define DIGIT_BIT when using MP_8BIT | |
50 #endif | |
51 #elif defined(MP_16BIT) | |
52 typedef uint16_t mp_digit; | |
53 typedef uint32_t mp_word; | |
54 #define MP_SIZEOF_MP_DIGIT 2 | |
55 #ifdef DIGIT_BIT | |
56 #error You must not define DIGIT_BIT when using MP_16BIT | |
57 #endif | |
58 #elif defined(MP_64BIT) | |
59 /* for GCC only on supported platforms */ | |
60 typedef uint64_t mp_digit; | |
61 #if defined(_WIN32) | |
62 typedef unsigned __int128 mp_word; | |
63 #elif defined(__GNUC__) | |
64 typedef unsigned long mp_word __attribute__ ((mode(TI))); | |
65 #else | |
66 /* it seems you have a problem | |
67 * but we assume you can somewhere define your own uint128_t */ | |
68 typedef uint128_t mp_word; | |
69 #endif | |
70 | |
71 #define DIGIT_BIT 60 | |
72 #else | |
73 /* this is the default case, 28-bit digits */ | |
74 | |
75 /* this is to make porting into LibTomCrypt easier :-) */ | |
76 typedef uint32_t mp_digit; | |
77 typedef uint64_t mp_word; | |
78 | |
79 #ifdef MP_31BIT | |
80 /* this is an extension that uses 31-bit digits */ | |
81 #define DIGIT_BIT 31 | |
82 #else | |
83 /* default case is 28-bit digits, defines MP_28BIT as a handy macro to test */ | |
84 #define DIGIT_BIT 28 | |
85 #define MP_28BIT | |
86 #endif | |
87 #endif | |
88 | |
89 /* otherwise the bits per digit is calculated automatically from the size of a mp_digit */ | |
90 #ifndef DIGIT_BIT | |
91 #define DIGIT_BIT (((CHAR_BIT * MP_SIZEOF_MP_DIGIT) - 1)) /* bits per digit */ | |
92 typedef uint_least32_t mp_min_u32; | |
93 #else | |
94 typedef mp_digit mp_min_u32; | |
95 #endif | |
96 | |
97 /* platforms that can use a better rand function */ | |
98 #if defined(__FreeBSD__) || defined(__OpenBSD__) || defined(__NetBSD__) || defined(__DragonFly__) | |
99 #define MP_USE_ALT_RAND 1 | |
100 #endif | |
101 | |
102 /* use arc4random on platforms that support it */ | |
103 #ifdef MP_USE_ALT_RAND | |
104 #define MP_GEN_RANDOM() arc4random() | |
105 #define MP_GEN_RANDOM_MAX 0xffffffff | |
106 #else | |
107 #define MP_GEN_RANDOM() rand() | |
108 #define MP_GEN_RANDOM_MAX RAND_MAX | |
109 #endif | |
110 | |
111 #define MP_DIGIT_BIT DIGIT_BIT | |
112 #define MP_MASK ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1)) | |
113 #define MP_DIGIT_MAX MP_MASK | |
114 | |
115 /* equalities */ | |
116 #define MP_LT -1 /* less than */ | |
117 #define MP_EQ 0 /* equal to */ | |
118 #define MP_GT 1 /* greater than */ | |
119 | |
120 #define MP_ZPOS 0 /* positive integer */ | |
121 #define MP_NEG 1 /* negative */ | |
122 | |
123 #define MP_OKAY 0 /* ok result */ | |
124 #define MP_MEM -2 /* out of mem */ | |
125 #define MP_VAL -3 /* invalid input */ | |
126 #define MP_RANGE MP_VAL | |
127 | |
128 #define MP_YES 1 /* yes response */ | |
129 #define MP_NO 0 /* no response */ | |
130 | |
131 /* Primality generation flags */ | |
132 #define LTM_PRIME_BBS 0x0001 /* BBS style prime */ | |
133 #define LTM_PRIME_SAFE 0x0002 /* Safe prime (p-1)/2 == prime */ | |
134 #define LTM_PRIME_2MSB_ON 0x0008 /* force 2nd MSB to 1 */ | |
135 | |
136 typedef int mp_err; | |
137 | |
138 /* you'll have to tune these... */ | |
139 extern int KARATSUBA_MUL_CUTOFF, | |
140 KARATSUBA_SQR_CUTOFF, | |
141 TOOM_MUL_CUTOFF, | |
142 TOOM_SQR_CUTOFF; | |
143 | |
144 /* define this to use lower memory usage routines (exptmods mostly) */ | |
145 /* #define MP_LOW_MEM */ | |
146 | |
147 /* default precision */ | |
148 #ifndef MP_PREC | |
149 #ifndef MP_LOW_MEM | |
150 #define MP_PREC 32 /* default digits of precision */ | |
151 #else | |
152 #define MP_PREC 8 /* default digits of precision */ | |
153 #endif | |
154 #endif | |
155 | |
156 /* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */ | |
157 #define MP_WARRAY (1 << (((sizeof(mp_word) * CHAR_BIT) - (2 * DIGIT_BIT)) + 1)) | |
158 | |
159 /* the infamous mp_int structure */ | |
160 typedef struct { | |
161 int used, alloc, sign; | |
162 mp_digit *dp; | |
163 } mp_int; | |
164 | |
165 /* callback for mp_prime_random, should fill dst with random bytes and return how many read [upto len] */ | |
166 typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat); | |
167 | |
168 | |
169 #define USED(m) ((m)->used) | |
170 #define DIGIT(m,k) ((m)->dp[(k)]) | |
171 #define SIGN(m) ((m)->sign) | |
172 | |
173 /* error code to char* string */ | |
174 const char *mp_error_to_string(int code); | |
175 | |
176 /* ---> init and deinit bignum functions <--- */ | |
177 /* init a bignum */ | |
178 int mp_init(mp_int *a); | |
179 | |
180 /* free a bignum */ | |
181 void mp_clear(mp_int *a); | |
182 | |
183 /* init a null terminated series of arguments */ | |
184 int mp_init_multi(mp_int *mp, ...); | |
185 | |
186 /* clear a null terminated series of arguments */ | |
187 void mp_clear_multi(mp_int *mp, ...); | |
188 | |
189 /* exchange two ints */ | |
190 void mp_exch(mp_int *a, mp_int *b); | |
191 | |
192 /* shrink ram required for a bignum */ | |
193 int mp_shrink(mp_int *a); | |
194 | |
195 /* grow an int to a given size */ | |
196 int mp_grow(mp_int *a, int size); | |
197 | |
198 /* init to a given number of digits */ | |
199 int mp_init_size(mp_int *a, int size); | |
200 | |
201 /* ---> Basic Manipulations <--- */ | |
202 #define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO) | |
203 #define mp_iseven(a) ((((a)->used > 0) && (((a)->dp[0] & 1u) == 0u)) ? MP_YES : MP_NO) | |
204 #define mp_isodd(a) ((((a)->used > 0) && (((a)->dp[0] & 1u) == 1u)) ? MP_YES : MP_NO) | |
205 #define mp_isneg(a) (((a)->sign != MP_ZPOS) ? MP_YES : MP_NO) | |
206 | |
207 /* set to zero */ | |
208 void mp_zero(mp_int *a); | |
209 | |
210 /* set to a digit */ | |
211 void mp_set(mp_int *a, mp_digit b); | |
212 | |
213 /* set a 32-bit const */ | |
214 int mp_set_int(mp_int *a, unsigned long b); | |
215 | |
216 /* set a platform dependent unsigned long value */ | |
217 int mp_set_long(mp_int *a, unsigned long b); | |
218 | |
219 /* set a platform dependent unsigned long long value */ | |
220 int mp_set_long_long(mp_int *a, unsigned long long b); | |
221 | |
222 /* get a 32-bit value */ | |
223 unsigned long mp_get_int(mp_int * a); | |
224 | |
225 /* get a platform dependent unsigned long value */ | |
226 unsigned long mp_get_long(mp_int * a); | |
227 | |
228 /* get a platform dependent unsigned long long value */ | |
229 unsigned long long mp_get_long_long(mp_int * a); | |
230 | |
231 /* initialize and set a digit */ | |
232 int mp_init_set (mp_int * a, mp_digit b); | |
233 | |
234 /* initialize and set 32-bit value */ | |
235 int mp_init_set_int (mp_int * a, unsigned long b); | |
236 | |
237 /* copy, b = a */ | |
238 int mp_copy(mp_int *a, mp_int *b); | |
239 | |
240 /* inits and copies, a = b */ | |
241 int mp_init_copy(mp_int *a, mp_int *b); | |
242 | |
243 /* trim unused digits */ | |
244 void mp_clamp(mp_int *a); | |
245 | |
246 /* import binary data */ | |
247 int mp_import(mp_int* rop, size_t count, int order, size_t size, int endian, size_t nails, const void* op); | |
248 | |
249 /* export binary data */ | |
250 int mp_export(void* rop, size_t* countp, int order, size_t size, int endian, size_t nails, mp_int* op); | |
251 | |
252 /* ---> digit manipulation <--- */ | |
253 | |
254 /* right shift by "b" digits */ | |
255 void mp_rshd(mp_int *a, int b); | |
256 | |
257 /* left shift by "b" digits */ | |
258 int mp_lshd(mp_int *a, int b); | |
259 | |
260 /* c = a / 2**b, implemented as c = a >> b */ | |
261 int mp_div_2d(mp_int *a, int b, mp_int *c, mp_int *d); | |
262 | |
263 /* b = a/2 */ | |
264 int mp_div_2(mp_int *a, mp_int *b); | |
265 | |
266 /* c = a * 2**b, implemented as c = a << b */ | |
267 int mp_mul_2d(mp_int *a, int b, mp_int *c); | |
268 | |
269 /* b = a*2 */ | |
270 int mp_mul_2(mp_int *a, mp_int *b); | |
271 | |
272 /* c = a mod 2**b */ | |
273 int mp_mod_2d(mp_int *a, int b, mp_int *c); | |
274 | |
275 /* computes a = 2**b */ | |
276 int mp_2expt(mp_int *a, int b); | |
277 | |
278 /* Counts the number of lsbs which are zero before the first zero bit */ | |
279 int mp_cnt_lsb(mp_int *a); | |
280 | |
281 /* I Love Earth! */ | |
282 | |
283 /* makes a pseudo-random int of a given size */ | |
284 int mp_rand(mp_int *a, int digits); | |
285 | |
286 /* ---> binary operations <--- */ | |
287 /* c = a XOR b */ | |
288 int mp_xor(mp_int *a, mp_int *b, mp_int *c); | |
289 | |
290 /* c = a OR b */ | |
291 int mp_or(mp_int *a, mp_int *b, mp_int *c); | |
292 | |
293 /* c = a AND b */ | |
294 int mp_and(mp_int *a, mp_int *b, mp_int *c); | |
295 | |
296 /* ---> Basic arithmetic <--- */ | |
297 | |
298 /* b = -a */ | |
299 int mp_neg(mp_int *a, mp_int *b); | |
300 | |
301 /* b = |a| */ | |
302 int mp_abs(mp_int *a, mp_int *b); | |
303 | |
304 /* compare a to b */ | |
305 int mp_cmp(mp_int *a, mp_int *b); | |
306 | |
307 /* compare |a| to |b| */ | |
308 int mp_cmp_mag(mp_int *a, mp_int *b); | |
309 | |
310 /* c = a + b */ | |
311 int mp_add(mp_int *a, mp_int *b, mp_int *c); | |
312 | |
313 /* c = a - b */ | |
314 int mp_sub(mp_int *a, mp_int *b, mp_int *c); | |
315 | |
316 /* c = a * b */ | |
317 int mp_mul(mp_int *a, mp_int *b, mp_int *c); | |
318 | |
319 /* b = a*a */ | |
320 int mp_sqr(mp_int *a, mp_int *b); | |
321 | |
322 /* a/b => cb + d == a */ | |
323 int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d); | |
324 | |
325 /* c = a mod b, 0 <= c < b */ | |
326 int mp_mod(mp_int *a, mp_int *b, mp_int *c); | |
327 | |
328 /* ---> single digit functions <--- */ | |
329 | |
330 /* compare against a single digit */ | |
331 int mp_cmp_d(mp_int *a, mp_digit b); | |
332 | |
333 /* c = a + b */ | |
334 int mp_add_d(mp_int *a, mp_digit b, mp_int *c); | |
335 | |
336 /* c = a - b */ | |
337 int mp_sub_d(mp_int *a, mp_digit b, mp_int *c); | |
338 | |
339 /* c = a * b */ | |
340 int mp_mul_d(mp_int *a, mp_digit b, mp_int *c); | |
341 | |
342 /* a/b => cb + d == a */ | |
343 int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d); | |
344 | |
345 /* a/3 => 3c + d == a */ | |
346 int mp_div_3(mp_int *a, mp_int *c, mp_digit *d); | |
347 | |
348 /* c = a**b */ | |
349 int mp_expt_d(mp_int *a, mp_digit b, mp_int *c); | |
350 int mp_expt_d_ex (mp_int * a, mp_digit b, mp_int * c, int fast); | |
351 | |
352 /* c = a mod b, 0 <= c < b */ | |
353 int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c); | |
354 | |
355 /* ---> number theory <--- */ | |
356 | |
357 /* d = a + b (mod c) */ | |
358 int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); | |
359 | |
360 /* d = a - b (mod c) */ | |
361 int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); | |
362 | |
363 /* d = a * b (mod c) */ | |
364 int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); | |
365 | |
366 /* c = a * a (mod b) */ | |
367 int mp_sqrmod(mp_int *a, mp_int *b, mp_int *c); | |
368 | |
369 /* c = 1/a (mod b) */ | |
370 int mp_invmod(mp_int *a, mp_int *b, mp_int *c); | |
371 | |
372 /* c = (a, b) */ | |
373 int mp_gcd(mp_int *a, mp_int *b, mp_int *c); | |
374 | |
375 /* produces value such that U1*a + U2*b = U3 */ | |
376 int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3); | |
377 | |
378 /* c = [a, b] or (a*b)/(a, b) */ | |
379 int mp_lcm(mp_int *a, mp_int *b, mp_int *c); | |
380 | |
381 /* finds one of the b'th root of a, such that |c|**b <= |a| | |
382 * | |
383 * returns error if a < 0 and b is even | |
384 */ | |
385 int mp_n_root(mp_int *a, mp_digit b, mp_int *c); | |
386 int mp_n_root_ex (mp_int * a, mp_digit b, mp_int * c, int fast); | |
387 | |
388 /* special sqrt algo */ | |
389 int mp_sqrt(mp_int *arg, mp_int *ret); | |
390 | |
391 /* special sqrt (mod prime) */ | |
392 int mp_sqrtmod_prime(mp_int *arg, mp_int *prime, mp_int *ret); | |
393 | |
394 /* is number a square? */ | |
395 int mp_is_square(mp_int *arg, int *ret); | |
396 | |
397 /* computes the jacobi c = (a | n) (or Legendre if b is prime) */ | |
398 int mp_jacobi(mp_int *a, mp_int *n, int *c); | |
399 | |
400 /* used to setup the Barrett reduction for a given modulus b */ | |
401 int mp_reduce_setup(mp_int *a, mp_int *b); | |
402 | |
403 /* Barrett Reduction, computes a (mod b) with a precomputed value c | |
404 * | |
405 * Assumes that 0 < a <= b*b, note if 0 > a > -(b*b) then you can merely | |
406 * compute the reduction as -1 * mp_reduce(mp_abs(a)) [pseudo code]. | |
407 */ | |
408 int mp_reduce(mp_int *a, mp_int *b, mp_int *c); | |
409 | |
410 /* setups the montgomery reduction */ | |
411 int mp_montgomery_setup(mp_int *a, mp_digit *mp); | |
412 | |
413 /* computes a = B**n mod b without division or multiplication useful for | |
414 * normalizing numbers in a Montgomery system. | |
415 */ | |
416 int mp_montgomery_calc_normalization(mp_int *a, mp_int *b); | |
417 | |
418 /* computes x/R == x (mod N) via Montgomery Reduction */ | |
419 int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp); | |
420 | |
421 /* returns 1 if a is a valid DR modulus */ | |
422 int mp_dr_is_modulus(mp_int *a); | |
423 | |
424 /* sets the value of "d" required for mp_dr_reduce */ | |
425 void mp_dr_setup(mp_int *a, mp_digit *d); | |
426 | |
427 /* reduces a modulo b using the Diminished Radix method */ | |
428 int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp); | |
429 | |
430 /* returns true if a can be reduced with mp_reduce_2k */ | |
431 int mp_reduce_is_2k(mp_int *a); | |
432 | |
433 /* determines k value for 2k reduction */ | |
434 int mp_reduce_2k_setup(mp_int *a, mp_digit *d); | |
435 | |
436 /* reduces a modulo b where b is of the form 2**p - k [0 <= a] */ | |
437 int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d); | |
438 | |
439 /* returns true if a can be reduced with mp_reduce_2k_l */ | |
440 int mp_reduce_is_2k_l(mp_int *a); | |
441 | |
442 /* determines k value for 2k reduction */ | |
443 int mp_reduce_2k_setup_l(mp_int *a, mp_int *d); | |
444 | |
445 /* reduces a modulo b where b is of the form 2**p - k [0 <= a] */ | |
446 int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d); | |
447 | |
448 /* d = a**b (mod c) */ | |
449 int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); | |
450 | |
451 /* ---> Primes <--- */ | |
452 | |
453 /* number of primes */ | |
454 #ifdef MP_8BIT | |
455 #define PRIME_SIZE 31 | |
456 #else | |
457 #define PRIME_SIZE 256 | |
458 #endif | |
459 | |
460 /* table of first PRIME_SIZE primes */ | |
461 extern const mp_digit ltm_prime_tab[PRIME_SIZE]; | |
462 | |
463 /* result=1 if a is divisible by one of the first PRIME_SIZE primes */ | |
464 int mp_prime_is_divisible(mp_int *a, int *result); | |
465 | |
466 /* performs one Fermat test of "a" using base "b". | |
467 * Sets result to 0 if composite or 1 if probable prime | |
468 */ | |
469 int mp_prime_fermat(mp_int *a, mp_int *b, int *result); | |
470 | |
471 /* performs one Miller-Rabin test of "a" using base "b". | |
472 * Sets result to 0 if composite or 1 if probable prime | |
473 */ | |
474 int mp_prime_miller_rabin(mp_int *a, mp_int *b, int *result); | |
475 | |
476 /* This gives [for a given bit size] the number of trials required | |
477 * such that Miller-Rabin gives a prob of failure lower than 2^-96 | |
478 */ | |
479 int mp_prime_rabin_miller_trials(int size); | |
480 | |
481 /* performs t rounds of Miller-Rabin on "a" using the first | |
482 * t prime bases. Also performs an initial sieve of trial | |
483 * division. Determines if "a" is prime with probability | |
484 * of error no more than (1/4)**t. | |
485 * | |
486 * Sets result to 1 if probably prime, 0 otherwise | |
487 */ | |
488 int mp_prime_is_prime(mp_int *a, int t, int *result); | |
489 | |
490 /* finds the next prime after the number "a" using "t" trials | |
491 * of Miller-Rabin. | |
492 * | |
493 * bbs_style = 1 means the prime must be congruent to 3 mod 4 | |
494 */ | |
495 int mp_prime_next_prime(mp_int *a, int t, int bbs_style); | |
496 | |
497 /* makes a truly random prime of a given size (bytes), | |
498 * call with bbs = 1 if you want it to be congruent to 3 mod 4 | |
499 * | |
500 * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can | |
501 * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself | |
502 * so it can be NULL | |
503 * | |
504 * The prime generated will be larger than 2^(8*size). | |
505 */ | |
506 #define mp_prime_random(a, t, size, bbs, cb, dat) mp_prime_random_ex(a, t, ((size) * 8) + 1, (bbs==1)?LTM_PRIME_BBS:0, cb, dat) | |
507 | |
508 /* makes a truly random prime of a given size (bits), | |
509 * | |
510 * Flags are as follows: | |
511 * | |
512 * LTM_PRIME_BBS - make prime congruent to 3 mod 4 | |
513 * LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS) | |
514 * LTM_PRIME_2MSB_ON - make the 2nd highest bit one | |
515 * | |
516 * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can | |
517 * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself | |
518 * so it can be NULL | |
519 * | |
520 */ | |
521 int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat); | |
522 | |
523 /* ---> radix conversion <--- */ | |
524 int mp_count_bits(mp_int *a); | |
525 | |
526 int mp_unsigned_bin_size(mp_int *a); | |
527 int mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c); | |
528 int mp_to_unsigned_bin(mp_int *a, unsigned char *b); | |
529 int mp_to_unsigned_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen); | |
530 | |
531 int mp_signed_bin_size(mp_int *a); | |
532 int mp_read_signed_bin(mp_int *a, const unsigned char *b, int c); | |
533 int mp_to_signed_bin(mp_int *a, unsigned char *b); | |
534 int mp_to_signed_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen); | |
535 | |
536 int mp_read_radix(mp_int *a, const char *str, int radix); | |
537 int mp_toradix(mp_int *a, char *str, int radix); | |
538 int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen); | |
539 int mp_radix_size(mp_int *a, int radix, int *size); | |
540 | |
541 #ifndef LTM_NO_FILE | |
542 int mp_fread(mp_int *a, int radix, FILE *stream); | |
543 int mp_fwrite(mp_int *a, int radix, FILE *stream); | |
544 #endif | |
545 | |
546 #define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len)) | |
547 #define mp_raw_size(mp) mp_signed_bin_size(mp) | |
548 #define mp_toraw(mp, str) mp_to_signed_bin((mp), (str)) | |
549 #define mp_read_mag(mp, str, len) mp_read_unsigned_bin((mp), (str), (len)) | |
550 #define mp_mag_size(mp) mp_unsigned_bin_size(mp) | |
551 #define mp_tomag(mp, str) mp_to_unsigned_bin((mp), (str)) | |
552 | |
553 #define mp_tobinary(M, S) mp_toradix((M), (S), 2) | |
554 #define mp_tooctal(M, S) mp_toradix((M), (S), 8) | |
555 #define mp_todecimal(M, S) mp_toradix((M), (S), 10) | |
556 #define mp_tohex(M, S) mp_toradix((M), (S), 16) | |
557 | |
558 #ifdef __cplusplus | |
559 } | |
560 #endif | |
561 | |
562 #endif | |
563 | |
564 | |
565 /* $Source$ */ | |
566 /* $Revision$ */ | |
567 /* $Date$ */ |