Mercurial > hg > Members > atton > agda-proofs
changeset 6:90abb3f53c03
Add functor example
author | Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 15 Jan 2015 17:27:25 +0900 |
parents | e8494d175afb |
children | c11c259916b7 |
files | sandbox/FunctorExample.agda |
diffstat | 1 files changed, 60 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/sandbox/FunctorExample.agda Thu Jan 15 17:27:25 2015 +0900 @@ -0,0 +1,60 @@ +open import Level +open import Relation.Binary.PropositionalEquality +open ≡-Reasoning + + +module FunctorExample where + +id : {l : Level} {A : Set l} -> A -> A +id x = x + +_∙_ : {l ll lll : Level} {A : Set l} {B : Set ll} {C : Set lll} -> (B -> C) -> (A -> B) -> (A -> C) +f ∙ g = \x -> f (g x) + + + +record Functor {l : Level} (F : Set l -> Set (suc l)) : (Set (suc l)) where + field + fmap : ∀{A B} -> (A -> B) -> (F A) -> (F B) + field + preserve-id : ∀{A} (Fa : F A) → fmap id Fa ≡ id Fa + covariant : ∀{A B C} (f : A → B) → (g : B → C) → (x : F A) + → fmap (g ∙ f) x ≡ fmap g (fmap f x) + +data List {l : Level} (A : Set l) : (Set (suc l)) where + nil : List A + cons : A -> List A -> List A + +list-fmap : {l ll : Level} {A : Set l} {B : Set ll} -> (A -> B) -> List A -> List B +list-fmap f nil = nil +list-fmap f (cons x xs) = cons (f x) (list-fmap f xs) + +list-preserve-id : {l : Level} {A : Set l} -> (xs : List A) -> list-fmap id xs ≡ id xs +list-preserve-id nil = refl +list-preserve-id (cons x xs) = cong (\li -> cons x li) (list-preserve-id xs) + +list-covariant : {l ll lll : Level} {A : Set l} {B : Set ll} {C : Set lll} -> + (f : A -> B) → (g : B -> C) → (x : List A) → list-fmap (g ∙ f) x ≡ list-fmap g (list-fmap f x) +list-covariant f g nil = refl +list-covariant f g (cons x xs) = cong (\li -> cons (g (f x)) li) (list-covariant f g xs) + + +list-is-functor : {l : Level} -> Functor List +list-is-functor {l} = record { fmap = list-fmap ; + preserve-id = list-preserve-id ; + covariant = list-covariant {l}} + +--open module FunctorWithImplicits {l ll : Level} {F : Set l -> Set ll} {{functorT : Functor F}} = Functor functorT + + +--hoge : ∀{F A} {{Functor F}} -> (Fa : F A) -> Functor.fmap id Fa ≡ id Fa +--hoge = {!!} + + +{- +record NaturalTransformation {l ll : Level} (F G : Set l -> Set ll) : Set (suc (l ⊔ ll)) where + field + natural : {A : Set l} -> F A -> G A + field + lemma : ∀{f } {x : Functor F} -> natural (fmap f x) ≡ f (natural x) +-}