Mercurial > hg > Members > atton > agda-proofs
changeset 34:d9b394c245c5
Set with constraint
author | atton <atton@cr.ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 02 Jan 2017 03:17:18 +0000 |
parents | 35ea84d35079 |
children | bf667ec8cba4 |
files | sandbox/SetWithConstraint.agda |
diffstat | 1 files changed, 21 insertions(+), 16 deletions(-) [+] |
line wrap: on
line diff
--- a/sandbox/SetWithConstraint.agda Mon Jan 02 02:50:57 2017 +0000 +++ b/sandbox/SetWithConstraint.agda Mon Jan 02 03:17:18 2017 +0000 @@ -13,22 +13,28 @@ empty : MySet A cons : (String × A) -> MySet A -> MySet A +elem : {A : Set} -> String -> MySet A -> Bool +elem a empty = false +elem a (cons (k , v) s) = elem' (a == k) a (k , v) s + where + elem' : {A : Set} -> Bool -> String -> (String × A) -> MySet A -> Bool + elem' false a p s = elem a s + elem' true _ _ _ = true + + +insert' : {A : Set} -> Bool -> (String × A) -> MySet A -> MySet A +insert' false p s = cons p s +insert' true _ s = s + insert : {A : Set} -> (String × A) -> MySet A -> MySet A -insert (k , v) empty = cons (k , v) empty -insert (k , v) (cons (sk , sv) s) with (k == sk) -... | true = cons (sk , sv) s -... | false = cons (sk , sv) (insert (k , v) s) +insert (k , v) empty = cons (k , v) empty +insert (k , v) s = insert' (elem k s) (k , v) s + length : {A : Set} -> MySet A -> ℕ length empty = 0 length (cons _ s) = suc (length s) -elem : {A : Set} -> String -> MySet A -> Bool -elem a empty = false -elem a (cons (k , v) s) with a == k -... | true = true -... | false = elem a s - head : {A : Set} -> MySet A -> Maybe (String × A) head empty = nothing head (cons x _) = just x @@ -43,15 +49,14 @@ open ≡-Reasoning -expand-non-elem : (k : String) (s : MySet ℕ) -> (nonElem : elem k s ≡ false) -> (just k ≢ (Data.Maybe.map proj₁ (head s))) -expand-non-elem k empty nonElem = {!!} -expand-non-elem k (cons x s) nonElem = {!!} - - insert-length : (k : String) (n : ℕ )(s : MySet ℕ) {nonElem : elem k s ≡ false} -> length (insert (k , n) s) ≡ suc (length s) insert-length k n empty = refl insert-length k n (cons (ks , vs) s) {nonElem} = begin length (insert (k , n) (cons (ks , vs) s)) - ≡⟨ {!!} ⟩ + ≡⟨ refl ⟩ + length (insert' (elem k (cons (ks , vs) s)) (k , n) (cons (ks , vs) s)) + ≡⟨ cong (\e -> length (insert' e (k , n) (cons (ks , vs) s))) nonElem ⟩ + length (insert' false (k , n) (cons (ks , vs) s)) + ≡⟨ refl ⟩ suc (suc (length s)) ∎