Mercurial > hg > Members > atton > agda > systemF
comparison systemF.agda @ 7:aac0c4fc941c
Add comments
author | Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 01 Apr 2014 15:31:29 +0900 |
parents | e6a39088cb0a |
children | 1801268c523d |
comparison
equal
deleted
inserted
replaced
6:e6a39088cb0a | 7:aac0c4fc941c |
---|---|
80 | 80 |
81 ∇_,_,_ : {W : Set l} -> (X : Set l) -> { u : V X } -> X -> W -> Σ X , u -> W | 81 ∇_,_,_ : {W : Set l} -> (X : Set l) -> { u : V X } -> X -> W -> Σ X , u -> W |
82 ∇_,_,_ {W} X {u} x w t = t {W} (\{X : Set l} -> \(x : V X) -> w) | 82 ∇_,_,_ {W} X {u} x w t = t {W} (\{X : Set l} -> \(x : V X) -> w) |
83 | 83 |
84 {- | 84 {- |
85 proofs and types style | 85 lemma-nabla on proofs and types |
86 (∇ X , x , w ) ⟨ U , u ⟩ ≡ w | 86 (∇ X , x , w ) ⟨ U , u ⟩ ≡ w |
87 w[U/X][u/x^[U/X]] | |
87 -} | 88 -} |
88 | 89 |
89 lemma-nabla : {X W U : Set l} -> {x : X} -> {w : W} -> (∇_,_,_ {W} X {v x} x w) ⟨ X , (v x) ⟩ ≡ w | 90 lemma-nabla : {X W : Set l} -> {x : X} -> {w : W} -> (∇_,_,_ {W} X {v x} x w) ⟨ X , (v x) ⟩ ≡ w |
90 lemma-nabla = refl | 91 lemma-nabla = refl |