open import Level open import Relation.Binary.PropositionalEquality module systemF {l : Level} where -- Bool Bool = \{l : Level} -> {X : Set l} -> X -> X -> X T : Bool T = \{X : Set} -> \(x : X) -> \y -> x F : Bool F = \{X : Set} -> \x -> \(y : X) -> y D : {X : Set} -> (U V : X) -> Bool -> X D {X} u v bool = bool {X} u v lemma-bool-t : {X : Set} -> {u v : X} -> D {X} u v T ≡ u lemma-bool-t = refl lemma-bool-f : {X : Set} -> {u v : X} -> D {X} u v F ≡ v lemma-bool-f = refl -- Product _×_ : {l : Level} -> Set l -> Set l -> Set (suc l) _×_ {l} U V = {X : Set l} -> (U -> V -> X) -> X <_,_> : {l : Level} -> {U V : Set l} -> U -> V -> (U × V) <_,_> {l} {U} {V} u v = \{X} -> \(x : U -> V -> X) -> x u v π1 : {U V : Set l} -> (U × V) -> U π1 {U} {V} t = t {U} \(x : U) -> \(y : V) -> x π2 : {U V : Set l} -> (U × V) -> V π2 {U} {V} t = t {V} \(x : U) -> \(y : V) -> y lemma-product-pi1 : {U V : Set l} -> {u : U} -> {v : V} -> π1 (< u , v >) ≡ u lemma-product-pi1 = refl lemma-product-pi2 : {U V : Set l} -> {u : U} -> {v : V} -> π2 (< u , v >) ≡ v lemma-product-pi2 = refl