Mercurial > hg > Members > atton > delta_monad
comparison agda/delta.agda @ 43:90b171e3a73e
Rename to Delta from Similar
author | Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 01 Nov 2014 15:19:04 +0900 |
parents | agda/similar.agda@1df4f9d88025 |
children | 9bb7c9bee94f |
comparison
equal
deleted
inserted
replaced
42:1df4f9d88025 | 43:90b171e3a73e |
---|---|
1 open import list | |
2 open import basic | |
3 | |
4 open import Level | |
5 open import Relation.Binary.PropositionalEquality | |
6 open ≡-Reasoning | |
7 | |
8 module delta where | |
9 | |
10 data Delta {l : Level} (A : Set l) : (Set (suc l)) where | |
11 similar : List String -> A -> List String -> A -> Delta A | |
12 | |
13 | |
14 -- Functor | |
15 fmap : {l ll : Level} {A : Set l} {B : Set ll} -> (A -> B) -> (Delta A) -> (Delta B) | |
16 fmap f (similar xs x ys y) = similar xs (f x) ys (f y) | |
17 | |
18 | |
19 -- Monad (Category) | |
20 mu : {l : Level} {A : Set l} -> Delta (Delta A) -> Delta A | |
21 mu (similar lx (similar llx x _ _) ly (similar _ _ lly y)) = similar (lx ++ llx) x (ly ++ lly) y | |
22 | |
23 eta : {l : Level} {A : Set l} -> A -> Delta A | |
24 eta x = similar [] x [] x | |
25 | |
26 returnS : {l : Level} {A : Set l} -> A -> Delta A | |
27 returnS x = similar [[ (show x) ]] x [[ (show x) ]] x | |
28 | |
29 returnSS : {l : Level} {A : Set l} -> A -> A -> Delta A | |
30 returnSS x y = similar [[ (show x) ]] x [[ (show y) ]] y | |
31 | |
32 | |
33 -- Monad (Haskell) | |
34 return : {l : Level} {A : Set l} -> A -> Delta A | |
35 return = eta | |
36 | |
37 | |
38 _>>=_ : {l ll : Level} {A : Set l} {B : Set ll} -> | |
39 (x : Delta A) -> (f : A -> (Delta B)) -> (Delta B) | |
40 x >>= f = mu (fmap f x) | |
41 | |
42 | |
43 | |
44 -- proofs | |
45 | |
46 | |
47 -- Functor-laws | |
48 | |
49 -- Functor-law-1 : T(id) = id' | |
50 functor-law-1 : {l : Level} {A : Set l} -> (s : Delta A) -> (fmap id) s ≡ id s | |
51 functor-law-1 (similar lx x ly y) = refl | |
52 | |
53 -- Functor-law-2 : T(f . g) = T(f) . T(g) | |
54 functor-law-2 : {l ll lll : Level} {A : Set l} {B : Set ll} {C : Set lll} -> | |
55 (f : B -> C) -> (g : A -> B) -> (s : Delta A) -> | |
56 (fmap (f ∙ g)) s ≡ ((fmap f) ∙ (fmap g)) s | |
57 functor-law-2 f g (similar lx x ly y) = refl | |
58 | |
59 | |
60 | |
61 -- Monad-laws (Category) | |
62 | |
63 -- monad-law-1 : join . fmap join = join . join | |
64 monad-law-1 : {l : Level} {A : Set l} -> (s : Delta (Delta (Delta A))) -> ((mu ∙ (fmap mu)) s) ≡ ((mu ∙ mu) s) | |
65 monad-law-1 (similar lx (similar llx (similar lllx x _ _) _ (similar _ _ _ _)) | |
66 ly (similar _ (similar _ _ _ _) lly (similar _ _ llly y))) = begin | |
67 similar (lx ++ (llx ++ lllx)) x (ly ++ (lly ++ llly)) y | |
68 ≡⟨ cong (\left-list -> similar left-list x (ly ++ (lly ++ llly)) y) (list-associative lx llx lllx) ⟩ | |
69 similar (lx ++ llx ++ lllx) x (ly ++ (lly ++ llly)) y | |
70 ≡⟨ cong (\right-list -> similar (lx ++ llx ++ lllx) x right-list y ) (list-associative ly lly llly) ⟩ | |
71 similar (lx ++ llx ++ lllx) x (ly ++ lly ++ llly) y | |
72 ∎ | |
73 | |
74 | |
75 -- monad-law-2 : join . fmap return = join . return = id | |
76 -- monad-law-2-1 join . fmap return = join . return | |
77 monad-law-2-1 : {l : Level} {A : Set l} -> (s : Delta A) -> | |
78 (mu ∙ fmap eta) s ≡ (mu ∙ eta) s | |
79 monad-law-2-1 (similar lx x ly y) = begin | |
80 similar (lx ++ []) x (ly ++ []) y | |
81 ≡⟨ cong (\left-list -> similar left-list x (ly ++ []) y) (empty-append lx)⟩ | |
82 similar lx x (ly ++ []) y | |
83 ≡⟨ cong (\right-list -> similar lx x right-list y) (empty-append ly) ⟩ | |
84 similar lx x ly y | |
85 ∎ | |
86 | |
87 -- monad-law-2-2 : join . return = id | |
88 monad-law-2-2 : {l : Level} {A : Set l } -> (s : Delta A) -> (mu ∙ eta) s ≡ id s | |
89 monad-law-2-2 (similar lx x ly y) = refl | |
90 | |
91 -- monad-law-3 : return . f = fmap f . return | |
92 monad-law-3 : {l : Level} {A B : Set l} (f : A -> B) (x : A) -> (eta ∙ f) x ≡ (fmap f ∙ eta) x | |
93 monad-law-3 f x = refl | |
94 | |
95 -- monad-law-4 : join . fmap (fmap f) = fmap f . join | |
96 monad-law-4 : {l ll : Level} {A : Set l} {B : Set ll} (f : A -> B) (s : Delta (Delta A)) -> | |
97 (mu ∙ fmap (fmap f)) s ≡ (fmap f ∙ mu) s | |
98 monad-law-4 f (similar lx (similar llx x _ _) ly (similar _ _ lly y)) = refl | |
99 | |
100 | |
101 -- Monad-laws (Haskell) | |
102 -- monad-law-h-1 : return a >>= k = k a | |
103 monad-law-h-1 : {l ll : Level} {A : Set l} {B : Set ll} -> | |
104 (a : A) -> (k : A -> (Delta B)) -> | |
105 (return a >>= k) ≡ (k a) | |
106 monad-law-h-1 a k = begin | |
107 return a >>= k | |
108 ≡⟨ refl ⟩ | |
109 mu (fmap k (return a)) | |
110 ≡⟨ refl ⟩ | |
111 mu (return (k a)) | |
112 ≡⟨ refl ⟩ | |
113 (mu ∙ return) (k a) | |
114 ≡⟨ refl ⟩ | |
115 (mu ∙ eta) (k a) | |
116 ≡⟨ (monad-law-2-2 (k a)) ⟩ | |
117 id (k a) | |
118 ≡⟨ refl ⟩ | |
119 k a | |
120 ∎ | |
121 | |
122 -- monad-law-h-2 : m >>= return = m | |
123 monad-law-h-2 : {l : Level}{A : Set l} -> (m : Delta A) -> (m >>= return) ≡ m | |
124 monad-law-h-2 (similar lx x ly y) = monad-law-2-1 (similar lx x ly y) | |
125 | |
126 -- monad-law-h-3 : m >>= (\x -> k x >>= h) = (m >>= k) >>= h | |
127 monad-law-h-3 : {l ll lll : Level} {A : Set l} {B : Set ll} {C : Set lll} -> | |
128 (m : Delta A) -> (k : A -> (Delta B)) -> (h : B -> (Delta C)) -> | |
129 (m >>= (\x -> k x >>= h)) ≡ ((m >>= k) >>= h) | |
130 monad-law-h-3 (similar lx x ly y) k h = begin | |
131 ((similar lx x ly y) >>= (\x -> (k x) >>= h)) | |
132 ≡⟨ refl ⟩ | |
133 mu (fmap (\x -> k x >>= h) (similar lx x ly y)) | |
134 ≡⟨ refl ⟩ | |
135 (mu ∙ fmap (\x -> k x >>= h)) (similar lx x ly y) | |
136 ≡⟨ refl ⟩ | |
137 (mu ∙ fmap (\x -> mu (fmap h (k x)))) (similar lx x ly y) | |
138 ≡⟨ refl ⟩ | |
139 (mu ∙ fmap (mu ∙ (\x -> fmap h (k x)))) (similar lx x ly y) | |
140 ≡⟨ refl ⟩ | |
141 (mu ∙ (fmap mu ∙ (fmap (\x -> fmap h (k x))))) (similar lx x ly y) | |
142 ≡⟨ refl ⟩ | |
143 (mu ∙ (fmap mu)) ((fmap (\x -> fmap h (k x))) (similar lx x ly y)) | |
144 ≡⟨ monad-law-1 (((fmap (\x -> fmap h (k x))) (similar lx x ly y))) ⟩ | |
145 (mu ∙ mu) ((fmap (\x -> fmap h (k x))) (similar lx x ly y)) | |
146 ≡⟨ refl ⟩ | |
147 (mu ∙ (mu ∙ (fmap (\x -> fmap h (k x))))) (similar lx x ly y) | |
148 ≡⟨ refl ⟩ | |
149 (mu ∙ (mu ∙ (fmap ((fmap h) ∙ k)))) (similar lx x ly y) | |
150 ≡⟨ refl ⟩ | |
151 (mu ∙ (mu ∙ ((fmap (fmap h)) ∙ (fmap k)))) (similar lx x ly y) | |
152 ≡⟨ refl ⟩ | |
153 (mu ∙ (mu ∙ (fmap (fmap h)))) (fmap k (similar lx x ly y)) | |
154 ≡⟨ refl ⟩ | |
155 mu ((mu ∙ (fmap (fmap h))) (fmap k (similar lx x ly y))) | |
156 ≡⟨ cong (\fx -> mu fx) (monad-law-4 h (fmap k (similar lx x ly y))) ⟩ | |
157 mu (fmap h (mu (similar lx (k x) ly (k y)))) | |
158 ≡⟨ refl ⟩ | |
159 (mu ∙ fmap h) (mu (fmap k (similar lx x ly y))) | |
160 ≡⟨ refl ⟩ | |
161 mu (fmap h (mu (fmap k (similar lx x ly y)))) | |
162 ≡⟨ refl ⟩ | |
163 (mu (fmap k (similar lx x ly y))) >>= h | |
164 ≡⟨ refl ⟩ | |
165 ((similar lx x ly y) >>= k) >>= h | |
166 ∎ |