Mercurial > hg > Members > atton > delta_monad
comparison agda/similar.agda @ 35:c5cdbedc68ad
Proof Monad-law-2-2
author | Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 18 Oct 2014 14:15:13 +0900 |
parents | b7c4e6276bcf |
children | 169ec60fcd36 |
comparison
equal
deleted
inserted
replaced
34:b7c4e6276bcf | 35:c5cdbedc68ad |
---|---|
47 similar lx x (ly ++ []) y | 47 similar lx x (ly ++ []) y |
48 ≡⟨ cong (\right-list -> similar lx x right-list y) (empty-append ly) ⟩ | 48 ≡⟨ cong (\right-list -> similar lx x right-list y) (empty-append ly) ⟩ |
49 similar lx x ly y | 49 similar lx x ly y |
50 ∎ | 50 ∎ |
51 | 51 |
52 monad-law-2-2 : {l : Level} {A : Set l } -> (s : Similar A) -> (mu ∙ return) s ≡ id s | |
53 monad-law-2-2 (similar lx x ly y) = refl | |
54 | |
52 {- | 55 {- |
53 monad-law-2-2 : mu ∙ return ≡ id | |
54 monad-law-2-2 = {!!} | |
55 | |
56 monad-law-3 : ∀{f} -> return ∙ f ≡ fmap f ∙ return | 56 monad-law-3 : ∀{f} -> return ∙ f ≡ fmap f ∙ return |
57 monad-law-3 = {!!} | 57 monad-law-3 = {!!} |
58 | 58 |
59 monad-law-4 : ∀{f} -> mu ∙ fmap (fmap f) ≡ fmap f ∙ mu | 59 monad-law-4 : ∀{f} -> mu ∙ fmap (fmap f) ≡ fmap f ∙ mu |
60 monad-law-4 = {!!} | 60 monad-law-4 = {!!} |