Mercurial > hg > Members > atton > delta_monad
diff agda/deltaM.agda @ 100:d8cd880f1d78
Redefine some functions DeltaM in agda
author | Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 23 Jan 2015 17:44:53 +0900 |
parents | cf372fbcebd8 |
children | 29c54b0197fb |
line wrap: on
line diff
--- a/agda/deltaM.agda Fri Jan 23 17:05:08 2015 +0900 +++ b/agda/deltaM.agda Fri Jan 23 17:44:53 2015 +0900 @@ -26,16 +26,16 @@ {functorM : {l' : Level} -> Functor {l'} M} {monadM : {l' : Level} {A : Set l'} -> Monad {l'} {A} M functorM} -> DeltaM M {functorM} {monadM} A -> M A -headDeltaM (deltaM (mono x)) = x -headDeltaM (deltaM (delta x _)) = x +headDeltaM (deltaM d) = headDelta d + tailDeltaM : {l : Level} {A : Set l} {M : {l' : Level} -> Set l' -> Set l'} {functorM : {l' : Level} -> Functor {l'} M} {monadM : {l' : Level} {A : Set l'} -> Monad {l'} {A} M functorM} -> DeltaM M {functorM} {monadM} A -> DeltaM M {functorM} {monadM} A -tailDeltaM (deltaM (mono x)) = deltaM (mono x) -tailDeltaM (deltaM (delta _ d)) = deltaM d +tailDeltaM (deltaM d) = deltaM (tailDelta d) + appendDeltaM : {l : Level} {A : Set l} {M : {l' : Level} -> Set l' -> Set l'} @@ -74,16 +74,24 @@ -> A -> (DeltaM M {functorM} {monadM} A) deltaM-eta {_} {A} {_} {_} {_} {monadM} x = deltaM (mono (eta {_} {A} monadM x)) +deltaM-mu : {l : Level} {A : Set l} {M : {l' : Level} -> Set l' -> Set l'} + {functorM : {l' : Level} -> Functor {l'} M} + {monadM : {l' : Level} {A : Set l'} -> Monad {l'} {A} M functorM} + -> (DeltaM M {functorM} {monadM} (DeltaM M {functorM} {monadM} A)) -> DeltaM M {functorM} {monadM} A +deltaM-mu {l} {A} {M} {functorM} {monadM} (deltaM (mono x)) = deltaM (mono (bind {l} {A} monadM x headDeltaM)) +deltaM-mu {l} {A} {M} {functorM} {monadM} (deltaM (delta x (mono xx))) = appendDeltaM (deltaM (mono (bind {l} {A} monadM x headDeltaM))) + (deltaM-mu (deltaM (mono xx))) +deltaM-mu {l} {A} {M} {functorM} {monadM} (deltaM (delta x (delta xx d))) = appendDeltaM (deltaM (mono (bind {l} {A} monadM x headDeltaM))) + (deltaM-mu (deltaM d)) +-- original deltaM-mu definitions. but it's cannot termination checking. +-- manually expand nested delta for delete tailDelta in argument to recursive deltaM-mu. +{- +deltaM-mu {l} {A} {M} {functorM} {monadM} (deltaM (delta x d)) = appendDeltaM (deltaM (mono (bind monadM x headDeltaM))) + (deltaM-mu (deltaM (tailDelta d))) +-} + deltaM-bind : {l : Level} {A B : Set l} {M : {l' : Level} -> Set l' -> Set l'} {functorM : {l' : Level} -> Functor {l'} M} {monadM : {l' : Level} {A : Set l'} -> Monad {l'} {A} M functorM} -> (DeltaM M {functorM} {monadM} A) -> (A -> DeltaM M {functorM} {monadM} B) -> DeltaM M {functorM} {monadM} B -deltaM-bind {l} {A} {B} {M} {functorM} {monadM} (deltaM (mono x)) f = deltaM (mono (bind {l} {A} monadM x (headDeltaM ∙ f))) -deltaM-bind {l} {A} {B} {M} {functorM} {monadM} (deltaM (delta x d)) f = appendDeltaM (deltaM (mono (bind {l} {A} monadM x (headDeltaM ∙ f)))) - (deltaM-bind (deltaM d) (tailDeltaM ∙ f)) - -deltaM-mu : {l : Level} {A : Set l} {M : {l' : Level} -> Set l' -> Set l'} - {functorM : {l' : Level} -> Functor {l'} M} - {monadM : {l' : Level} {A : Set l'} -> Monad {l'} {A} M functorM} - -> (DeltaM M {functorM} {monadM} (DeltaM M {functorM} {monadM} A)) -> DeltaM M {functorM} {monadM} A -deltaM-mu d = deltaM-bind d id \ No newline at end of file +deltaM-bind {l} {A} {B} {M} {functorM} {monadM} d f = deltaM-mu (deltaM-fmap f d)