Mercurial > hg > Members > atton > delta_monad
view delta.hs @ 121:673e1ca0d1a9
Refactor monad definition
author | Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 02 Feb 2015 12:11:24 +0900 |
parents | f2187ad63791 |
children |
line wrap: on
line source
import Control.Applicative import Control.Monad.Writer import Data.Numbers.Primes -- $ cabal install primes -- Delta definition data Delta a = Mono a | Delta a (Delta a) deriving Show instance (Eq a) => Eq (Delta a) where (Mono x) == (Mono y) = x == y (Mono _) == (Delta _ _) = False (Delta x xs) == (Delta y ys) = (x == y) && (xs == ys) -- basic functions deltaAppend :: Delta a -> Delta a -> Delta a deltaAppend (Mono x) d = Delta x d deltaAppend (Delta x d) ds = Delta x (deltaAppend d ds) headDelta :: Delta a -> a headDelta (Mono x) = x headDelta (Delta x _) = x tailDelta :: Delta a -> Delta a tailDelta d@(Mono _) = d tailDelta (Delta _ ds) = ds -- instance definitions instance Functor Delta where fmap f (Mono x) = Mono (f x) fmap f (Delta x d) = Delta (f x) (fmap f d) instance Applicative Delta where pure f = Mono f (Mono f) <*> (Mono x) = Mono (f x) df@(Mono f) <*> (Delta x d) = Delta (f x) (df <*> d) (Delta f df) <*> d@(Mono x) = Delta (f x) (df <*> d) (Delta f df) <*> (Delta x d) = Delta (f x) (df <*> d) bind :: (Delta a) -> (a -> Delta b) -> (Delta b) bind (Mono x) f = f x bind (Delta x d) f = Delta (headDelta (f x)) (bind d (tailDelta . f)) mu :: (Delta (Delta a)) -> (Delta a) mu d = bind d id instance Monad Delta where return x = Mono x d >>= f = mu $ fmap f d -- utils returnDD :: (Show s) => s -> s -> Delta s returnDD x y = (return x) `deltaAppend` (return y) deltaFromList :: [a] -> Delta a deltaFromList = (foldl1 deltaAppend) . (fmap return) -- samples generator :: Int -> Delta [Int] generator x = let intList = [1..x] in return intList primeFilter :: [Int] -> Delta [Int] primeFilter xs = let primeList = filter isPrime xs refactorList = filter even xs in returnDD primeList refactorList count :: [Int] -> Delta Int count xs = let primeCount = length xs in return primeCount primeCount :: Int -> Delta Int primeCount x = generator x >>= primeFilter >>= count bubbleSort :: [Int] -> Delta [Int] bubbleSort [] = return [] bubbleSort xs = bubbleSort remainValue >>= (\xs -> returnDD (sortedValueL : xs) (sortedValueR ++ xs)) where maximumValue = maximum xs sortedValueL = maximumValue sortedValueR = replicate (length $ filter (== maximumValue) xs) maximumValue remainValue = filter (/= maximumValue) xs -- DeltaM definition (Delta with Monad) data DeltaM m a = DeltaM (Delta (m a)) deriving (Show) -- DeltaM utils unDeltaM :: DeltaM m a -> Delta (m a) unDeltaM (DeltaM d) = d headDeltaM :: DeltaM m a -> m a headDeltaM (DeltaM d) = headDelta d tailDeltaM :: DeltaM m a -> DeltaM m a tailDeltaM (DeltaM d) = DeltaM $ tailDelta d appendDeltaM :: DeltaM m a -> DeltaM m a -> DeltaM m a appendDeltaM (DeltaM d) (DeltaM dd) = DeltaM (deltaAppend d dd) checkOut :: Int -> DeltaM m a -> m a checkOut 0 (DeltaM (Mono x)) = x checkOut 0 (DeltaM (Delta x _)) = x checkOut n (DeltaM (Mono x)) = x checkOut n (DeltaM (Delta _ d)) = checkOut (n-1) (DeltaM d) -- DeltaM instance definitions instance (Functor m) => Functor (DeltaM m) where fmap f (DeltaM d) = DeltaM $ fmap (fmap f) d instance (Applicative m) => Applicative (DeltaM m) where pure f = DeltaM $ Mono $ pure f (DeltaM (Mono f)) <*> (DeltaM (Mono x)) = DeltaM $ Mono $ f <*> x df@(DeltaM (Mono f)) <*> (DeltaM (Delta x d)) = appendDeltaM (DeltaM $ Mono $ f <*> x) (df <*> (DeltaM d)) (DeltaM (Delta f df)) <*> dx@(DeltaM (Mono x)) = appendDeltaM (DeltaM $ Mono $ f <*> x) ((DeltaM df) <*> dx) (DeltaM (Delta f df)) <*> (DeltaM (Delta x dx)) = appendDeltaM (DeltaM $ Mono $ f <*> x) ((DeltaM df) <*> (DeltaM dx)) mu' :: (Functor m, Monad m) => DeltaM m (DeltaM m a) -> DeltaM m a mu' d@(DeltaM (Mono _)) = DeltaM $ Mono $ (>>= id) $ fmap headDeltaM $ headDeltaM d mu' d@(DeltaM (Delta _ _)) = DeltaM $ Delta ((>>= id) $ fmap headDeltaM $ headDeltaM d) (unDeltaM (mu' (fmap tailDeltaM (tailDeltaM d)))) instance (Functor m, Monad m) => Monad (DeltaM m) where return x = DeltaM $ Mono $ return x d >>= f = mu' $ fmap f d -- DeltaM examples -- DeltaM example utils type DeltaLog = Writer [String] type DeltaWithLog = DeltaM DeltaLog returnW :: (Show a) => a -> DeltaLog a returnW x = do tell $ [show x] return x dmap :: (m a -> b) -> DeltaM m a -> Delta b dmap f (DeltaM d) = fmap f d deltaWithLogFromList :: (Show a) => [a] -> DeltaWithLog a deltaWithLogFromList xs = DeltaM $ deltaFromList $ fmap returnW xs -- example : prime filter -- usage : runWriter $ checkOut 0 $ primeCountM 30 -- run specific version -- : dmap runWriter $ primeCountM 30 -- run all version generatorM :: Int -> DeltaWithLog [Int] generatorM x = let intList = [1..x] in DeltaM $ deltaFromList $ fmap returnW $ replicate 2 intList primeFilterM :: [Int] -> DeltaWithLog [Int] primeFilterM xs = let primeList = filter isPrime xs refactorList = filter even xs in DeltaM $ deltaFromList $ fmap returnW [primeList, refactorList] countM :: [Int] -> DeltaWithLog Int countM xs = let primeCount = length xs in DeltaM $ deltaFromList $ fmap returnW $ replicate 2 primeCount primeCountM :: Int -> DeltaWithLog Int primeCountM x = generatorM x >>= primeFilterM >>= countM