Mercurial > hg > Members > atton > delta_monad
view delta.hs @ 52:69a01cc80075
Define Delta for Infinite changes in Haskell
author | Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 19 Nov 2014 13:33:37 +0900 |
parents | 8d9c55bac8b2 |
children | 1e6fecb54f1f |
line wrap: on
line source
import Control.Applicative import Data.Numbers.Primes -- $ cabal install primes type DeltaLog = [String] data Delta a = Mono DeltaLog a | Delta DeltaLog a (Delta a) deriving Show logAppend :: DeltaLog -> Delta a -> Delta a logAppend l (Mono lx x) = Mono (l ++ lx) x logAppend l (Delta lx x d) = Delta (l ++ lx) x (logAppend l d) deltaAppend :: Delta a -> Delta a -> Delta a deltaAppend (Mono lx x) d = Delta lx x d deltaAppend (Delta lx x d) ds = Delta lx x (deltaAppend d ds) firstDelta :: Delta a -> Delta a firstDelta d@(Mono _ _) = d firstDelta (Delta lx x _) = Mono lx x tailDelta :: Delta a -> Delta a tailDelta d@(Mono _ _) = d tailDelta (Delta _ _ ds) = ds instance Functor Delta where fmap f (Mono lx x) = Mono lx (f x) fmap f (Delta lx x d) = Delta lx (f x) (fmap f d) instance Applicative Delta where pure f = Mono [] f (Mono lf f) <*> (Mono lx x) = Mono (lf ++ lx) (f x) df@(Mono lf f) <*> (Delta lx x d) = Delta (lf ++ lx) (f x) (df <*> d) (Delta lf f df) <*> d@(Mono lx x) = Delta (lf ++ lx) (f x) (df <*> d) (Delta lf f df) <*> (Delta lx x d) = Delta (lf ++ lx) (f x) (df <*> d) mu :: Delta (Delta a) -> Delta a mu (Mono ld d) = logAppend ld d mu (Delta ld d ds) = (logAppend ld $ firstDelta d) `deltaAppend` (mu $ fmap tailDelta ds) instance Monad Delta where return x = Mono [] x d >>= f = mu $ fmap f d returnS :: (Show s) => s -> Delta s returnS x = Mono [(show x)] x returnSS :: (Show s) => s -> s -> Delta s returnSS x y = (returnS x) `deltaAppend` (returnS y) -- samples generator :: Int -> Delta [Int] generator x = let intList = [1..x] in returnS intList primeFilter :: [Int] -> Delta [Int] primeFilter xs = let primeList = filter isPrime xs refactorList = filter even xs in returnSS primeList refactorList count :: [Int] -> Delta Int count xs = let primeCount = length xs in returnS primeCount primeCount :: Int -> Delta Int primeCount x = generator x >>= primeFilter >>= count bubbleSort :: [Int] -> Delta [Int] bubbleSort [] = returnS [] bubbleSort xs = bubbleSort remainValue >>= (\xs -> returnSS (sortedValueL : xs) (sortedValueR ++ xs)) where maximumValue = maximum xs sortedValueL = maximumValue sortedValueR = replicate (length $ filter (== maximumValue) xs) maximumValue remainValue = filter (/= maximumValue) xs