Mercurial > hg > Members > atton > delta_monad
view delta.hs @ 75:a4eb68476766
Prove n-tail-add
author | Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 01 Dec 2014 11:42:32 +0900 |
parents | 0ad0ae7a3cbe |
children | 1339772b2e36 |
line wrap: on
line source
import Control.Applicative import Data.Numbers.Primes -- $ cabal install primes -- delta definition data Delta a = Mono a | Delta a (Delta a) deriving Show instance (Eq a) => Eq (Delta a) where (Mono x) == (Mono y) = x == y (Mono _) == (Delta _ _) = False (Delta x xs) == (Delta y ys) = (x == y) && (xs == ys) -- basic functions deltaAppend :: Delta a -> Delta a -> Delta a deltaAppend (Mono x) d = Delta x d deltaAppend (Delta x d) ds = Delta x (deltaAppend d ds) headDelta :: Delta a -> a headDelta (Mono x) = x headDelta (Delta x _) = x tailDelta :: Delta a -> Delta a tailDelta d@(Mono _) = d tailDelta (Delta _ ds) = ds -- instance definitions instance Functor Delta where fmap f (Mono x) = Mono (f x) fmap f (Delta x d) = Delta (f x) (fmap f d) instance Applicative Delta where pure f = Mono f (Mono f) <*> (Mono x) = Mono (f x) df@(Mono f) <*> (Delta x d) = Delta (f x) (df <*> d) (Delta f df) <*> d@(Mono x) = Delta (f x) (df <*> d) (Delta f df) <*> (Delta x d) = Delta (f x) (df <*> d) bind :: (Delta a) -> (a -> Delta b) -> (Delta b) bind (Mono x) f = f x bind (Delta x d) f = Delta (headDelta (f x)) (bind d (tailDelta . f)) mu :: (Delta (Delta a)) -> (Delta a) mu d = bind d id instance Monad Delta where return x = Mono x d >>= f = mu $ fmap f d -- utils returnS :: (Show s) => s -> Delta s returnS x = Mono x returnSS :: (Show s) => s -> s -> Delta s returnSS x y = (returnS x) `deltaAppend` (returnS y) deltaFromList :: [a] -> Delta a deltaFromList = (foldl1 deltaAppend) . (fmap return) -- samples generator :: Int -> Delta [Int] generator x = let intList = [1..x] in returnS intList primeFilter :: [Int] -> Delta [Int] primeFilter xs = let primeList = filter isPrime xs refactorList = filter even xs in returnSS primeList refactorList count :: [Int] -> Delta Int count xs = let primeCount = length xs in returnS primeCount primeCount :: Int -> Delta Int primeCount x = generator x >>= primeFilter >>= count bubbleSort :: [Int] -> Delta [Int] bubbleSort [] = returnS [] bubbleSort xs = bubbleSort remainValue >>= (\xs -> returnSS (sortedValueL : xs) (sortedValueR ++ xs)) where maximumValue = maximum xs sortedValueL = maximumValue sortedValueR = replicate (length $ filter (== maximumValue) xs) maximumValue remainValue = filter (/= maximumValue) xs