Mercurial > hg > Members > atton > delta_monad
view similar.hs @ 20:d4aa70d94352
Define Similar as Applicative
author | Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 23 Sep 2014 10:38:53 +0900 |
parents | 003b6e58d815 |
children | af8754322ed4 |
line wrap: on
line source
import Control.Applicative import Data.Numbers.Primes -- $ cabal install primes data Similar a = Single [String] a | Similar [String] a [String] a deriving (Show) value :: (Similar a) -> Similar a value (Similar xs x _ _) = Single xs x value s = s instance (Eq a) => Eq (Similar a) where s == ss = (value s) == (value ss) instance Functor Similar where fmap f (Single xs x) = Single xs (f x) fmap f (Similar xs x ys y) = Similar xs (f x) ys (f y) instance Applicative Similar where pure = Single [] (Single lf f) <*> (Single lx x) = Single (lf ++ lx) (f x) (Single lf f) <*> (Similar lx x ly y) = Similar (lf ++ lx) (f x) (lf ++ ly) (f y) (Similar lf f lg g) <*> (Single lx x) = Similar (lf ++ lx) (f x) (lg ++ lx) (g x) (Similar lf f lg g) <*> (Similar lx x ly y) = Similar (lf ++ lx) (f x) (lg ++ ly) (g y) mu :: Similar (Similar a) -> Similar a mu (Single ls (Single lx x)) = Single (ls ++ lx) x mu (Single ls (Similar lx x ly y)) = Similar (ls ++ lx) x (ls ++ ly) y mu (Similar lx (Single llx x) ly (Single lly y)) = Similar (lx ++ llx) x (ly ++ lly) y mu (Similar lx (Similar llx x _ _) ly (Similar _ _ lly y)) = Similar (lx ++ llx) x (lx ++ lly) y mu _ = error "Invalid Similar" instance Monad Similar where return = Single [] s >>= f = mu $ fmap f s {- -- samples {- generator :: Int -> Similar [Int] generator x = return [1..x] primeFilter :: [Int] -> Similar [Int] primeFilter xs = return $ filter isPrime xs count :: [Int] -> Similar Int count xs = return $ length xs primeCount :: Int -> Int primeCount x = value $ generator x >>= primeFilter >>= count -} {- same :: (Eq a) => Similar a -> a same (Single x) = x same (Similar x s) = if x == (same s) then x else (error "same") similar :: Similar a -> Similar a -> Similar a similar (Single x) ss = Similar x ss similar (Similar x s) ss = Similar x (similar s ss) instance Functor Similar where fmap f (Single a) = Single (f a) fmap f (Similar a s) = Similar (f a) (fmap f s) instance Applicative Similar where pure = Single (Single f) <*> s = fmap f s (Similar f s) <*> ss = similar (fmap f ss) (s <*> ss) mu :: (Similar (Similar a)) -> Similar a mu (Single s) = s mu (Similar s ss) = similar s (mu ss) -- samples double :: Int -> Similar Int double x = Single (2 * x) twicePlus :: Int -> Similar Int twicePlus x = Similar (x + x) (double x) plusTwo :: Int -> Similar Int plusTwo x = Similar (x + 2) (double x) -- samples {- - Similar as Functor *Main> fmap (double ) (Single 1) Single (Single 2) *Main> fmap (twicePlus) (Single 1) Single (Similar 2 (Single 2)) *Main> fmap (plusTwo) (Single 1) Single (Similar 3 (Single 2)) *Main> fmap (fmap double) (fmap (plusTwo ) (Single 1)) Single (Similar (Single 6) (Single (Single 4))) *Main> same $ fmap same $ fmap (fmap double) (fmap (plusTwo ) (Single 1)) *** Exception: same *Main> same $ fmap same $ fmap (fmap double) (fmap (plusTwo ) (Single 2)) Single 8 - Similar as Applicative Functor *Main> Single (\x -> x * x) <*> Single 100 Single 10000 *Main> Similar (\x -> x * x) (Single (\x -> x * 3)) <*> Single 100 Similar 10000 (Single 300) *Main> Similar (\x -> x * x) (Single (\x -> x * 3)) <*> (Similar 100 (Single 200)) Similar 10000 (Similar 40000 (Similar 300 (Single 600))) - Similar as Monad *Main> return 100 >>= double >>= twicePlus Similar 400 (Single 400) *Main> return 100 >>= double >>= twicePlus >>= plusTwo Similar 402 (Similar 800 (Similar 402 (Single 800))) *Main> same $ return 100 >>= double >>= twicePlus >>= plusTwo *** Exception: same *Main> same $ return 100 >>= double >>= twicePlus 400 *Main> same $ return 100 >>= double >>= twicePlus 400 *Main> same $ return 100 >>= double >>= twicePlus >>= plusTwo *** Exception: same *Main> value $ return 100 >>= double >>= twicePlus >>= plusTwo 800 -} -} -}