Mercurial > hg > Members > atton > delta_monad
view delta.hs @ 49:d654fdecdcd0
Wrote bubble sort with modified calculate
author | Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 17 Nov 2014 10:23:38 +0900 |
parents | 820af7cc8485 |
children | 8d9c55bac8b2 |
line wrap: on
line source
import Control.Applicative import Data.Numbers.Primes -- $ cabal install primes data Delta a = Delta [String] a [String] a instance (Show a) => Show (Delta a) where show (Delta lx x ly y) = values ++ logs where values = "Delta {" ++ (show x) ++ "|" ++ (show y) ++ "}\n" logs = concat . reverse $ zipWith formatter lx ly formatter x y = " {" ++ x ++ (separator x y) ++ y ++ "}\n" separator x y = if (max (length x) (length y)) > 50 then "|\n " else "|" value :: (Delta a) -> a value (Delta _ x _ _) = x deltaLeft :: (Delta a) -> a deltaLeft (Delta _ x _ _) = x deltaRight :: (Delta a) -> a deltaRight (Delta _ _ _ y) = y instance (Eq a) => Eq (Delta a) where s == ss = (value s) == (value ss) instance Functor Delta where fmap f (Delta xs x ys y) = Delta xs (f x) ys (f y) instance Applicative Delta where pure f = Delta [] f [] f (Delta lf f lg g) <*> (Delta lx x ly y) = Delta (lf ++ lx) (f x) (lg ++ ly) (g y) mu :: Delta (Delta a) -> Delta a mu (Delta lx (Delta llx x _ _) ly (Delta _ _ lly y)) = Delta (lx ++ llx) x (ly ++ lly) y instance Monad Delta where return x = Delta [] x [] x s >>= f = mu $ fmap f s returnS :: (Show s) => s -> Delta s returnS x = Delta [(show x)] x [(show x)] x returnSS :: (Show s) => s -> s -> Delta s returnSS x y = Delta [(show x)] x [(show y)] y -- samples generator :: Int -> Delta [Int] generator x = let intList = [1..x] in returnS intList primeFilter :: [Int] -> Delta [Int] primeFilter xs = let primeList = filter isPrime xs refactorList = filter even xs in returnSS primeList refactorList count :: [Int] -> Delta Int count xs = let primeCount = length xs in returnS primeCount primeCount :: Int -> Delta Int primeCount x = generator x >>= primeFilter >>= count bubbleSort :: [Int] -> Delta [Int] bubbleSort [] = returnS [] bubbleSort xs = bubbleSort remainValue >>= (\xs -> returnSS (sortedValueL : xs) (sortedValueR ++ xs)) where maxmumValue = maximum xs sortedValueL = maxmumValue sortedValueR = replicate (length $ filter (== maxmumValue) xs) maxmumValue remainValue = filter (/= maxmumValue) xs