Mercurial > hg > Members > atton > delta_monad
view agda/delta.agda @ 105:e6499a50ccbd
Retrying prove monad-laws for delta
author | Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 27 Jan 2015 17:49:25 +0900 |
parents | ebd0d6e2772c |
children | d205ff1e406f |
line wrap: on
line source
open import list open import basic open import nat open import laws open import Level open import Relation.Binary.PropositionalEquality open ≡-Reasoning module delta where data Delta {l : Level} (A : Set l) : (Nat -> (Set l)) where mono : A -> Delta A (S O) delta : {n : Nat} -> A -> Delta A (S n) -> Delta A (S (S n)) deltaAppend : {l : Level} {A : Set l} {n m : Nat} -> Delta A (S n) -> Delta A (S m) -> Delta A ((S n) + (S m)) deltaAppend (mono x) d = delta x d deltaAppend (delta x d) ds = delta x (deltaAppend d ds) headDelta : {l : Level} {A : Set l} {n : Nat} -> Delta A (S n) -> A headDelta (mono x) = x headDelta (delta x _) = x tailDelta : {l : Level} {A : Set l} {n : Nat} -> Delta A (S (S n)) -> Delta A (S n) tailDelta (delta _ d) = d -- Functor delta-fmap : {l : Level} {A B : Set l} {n : Nat} -> (A -> B) -> (Delta A (S n)) -> (Delta B (S n)) delta-fmap f (mono x) = mono (f x) delta-fmap f (delta x d) = delta (f x) (delta-fmap f d) -- Monad (Category) delta-eta : {l : Level} {A : Set l} {n : Nat} -> A -> Delta A (S n) delta-eta {n = O} x = mono x delta-eta {n = (S n)} x = delta x (delta-eta {n = n} x) delta-mu : {l : Level} {A : Set l} {n : Nat} -> (Delta (Delta A (S n)) (S n)) -> Delta A (S n) delta-mu (mono x) = x delta-mu (delta x d) = delta (headDelta x) (delta-mu (delta-fmap tailDelta d)) delta-bind : {l : Level} {A B : Set l} {n : Nat} -> (Delta A (S n)) -> (A -> Delta B (S n)) -> Delta B (S n) delta-bind d f = delta-mu (delta-fmap f d) --delta-bind (mono x) f = f x --delta-bind (delta x d) f = delta (headDelta (f x)) (tailDelta (f x)) {- -- Monad (Haskell) delta-return : {l : Level} {A : Set l} -> A -> Delta A (S O) delta-return = delta-eta _>>=_ : {l : Level} {A B : Set l} {n : Nat} -> (x : Delta A n) -> (f : A -> (Delta B n)) -> (Delta B n) d >>= f = delta-bind d f -} {- -- proofs -- sub-proofs n-tail-plus : {l : Level} {A : Set l} -> (n : Nat) -> ((n-tail {l} {A} n) ∙ tailDelta) ≡ n-tail (S n) n-tail-plus O = refl n-tail-plus (S n) = begin n-tail (S n) ∙ tailDelta ≡⟨ refl ⟩ (tailDelta ∙ (n-tail n)) ∙ tailDelta ≡⟨ refl ⟩ tailDelta ∙ ((n-tail n) ∙ tailDelta) ≡⟨ cong (\t -> tailDelta ∙ t) (n-tail-plus n) ⟩ n-tail (S (S n)) ∎ n-tail-add : {l : Level} {A : Set l} {d : Delta A} -> (n m : Nat) -> (n-tail {l} {A} n) ∙ (n-tail m) ≡ n-tail (n + m) n-tail-add O m = refl n-tail-add (S n) O = begin n-tail (S n) ∙ n-tail O ≡⟨ refl ⟩ n-tail (S n) ≡⟨ cong (\n -> n-tail n) (nat-add-right-zero (S n))⟩ n-tail (S n + O) ∎ n-tail-add {l} {A} {d} (S n) (S m) = begin n-tail (S n) ∙ n-tail (S m) ≡⟨ refl ⟩ (tailDelta ∙ (n-tail n)) ∙ n-tail (S m) ≡⟨ refl ⟩ tailDelta ∙ ((n-tail n) ∙ n-tail (S m)) ≡⟨ cong (\t -> tailDelta ∙ t) (n-tail-add {l} {A} {d} n (S m)) ⟩ tailDelta ∙ (n-tail (n + (S m))) ≡⟨ refl ⟩ n-tail (S (n + S m)) ≡⟨ refl ⟩ n-tail (S n + S m) ∎ tail-delta-to-mono : {l : Level} {A : Set l} -> (n : Nat) -> (x : A) -> (n-tail n) (mono x) ≡ (mono x) tail-delta-to-mono O x = refl tail-delta-to-mono (S n) x = begin n-tail (S n) (mono x) ≡⟨ refl ⟩ tailDelta (n-tail n (mono x)) ≡⟨ refl ⟩ tailDelta (n-tail n (mono x)) ≡⟨ cong (\t -> tailDelta t) (tail-delta-to-mono n x) ⟩ tailDelta (mono x) ≡⟨ refl ⟩ mono x ∎ head-delta-natural-transformation : {l : Level} {A B : Set l} -> (f : A -> B) -> (d : Delta A) -> headDelta (delta-fmap f d) ≡ f (headDelta d) head-delta-natural-transformation f (mono x) = refl head-delta-natural-transformation f (delta x d) = refl n-tail-natural-transformation : {l : Level} {A B : Set l} -> (n : Nat) -> (f : A -> B) -> (d : Delta A) -> n-tail n (delta-fmap f d) ≡ delta-fmap f (n-tail n d) n-tail-natural-transformation O f d = refl n-tail-natural-transformation (S n) f (mono x) = begin n-tail (S n) (delta-fmap f (mono x)) ≡⟨ refl ⟩ n-tail (S n) (mono (f x)) ≡⟨ tail-delta-to-mono (S n) (f x) ⟩ (mono (f x)) ≡⟨ refl ⟩ delta-fmap f (mono x) ≡⟨ cong (\d -> delta-fmap f d) (sym (tail-delta-to-mono (S n) x)) ⟩ delta-fmap f (n-tail (S n) (mono x)) ∎ n-tail-natural-transformation (S n) f (delta x d) = begin n-tail (S n) (delta-fmap f (delta x d)) ≡⟨ refl ⟩ n-tail (S n) (delta (f x) (delta-fmap f d)) ≡⟨ cong (\t -> t (delta (f x) (delta-fmap f d))) (sym (n-tail-plus n)) ⟩ ((n-tail n) ∙ tailDelta) (delta (f x) (delta-fmap f d)) ≡⟨ refl ⟩ n-tail n (delta-fmap f d) ≡⟨ n-tail-natural-transformation n f d ⟩ delta-fmap f (n-tail n d) ≡⟨ refl ⟩ delta-fmap f (((n-tail n) ∙ tailDelta) (delta x d)) ≡⟨ cong (\t -> delta-fmap f (t (delta x d))) (n-tail-plus n) ⟩ delta-fmap f (n-tail (S n) (delta x d)) ∎ -}