# HG changeset patch # User Yasutaka Higa # Date 1413609313 -32400 # Node ID c5cdbedc68ad69bb0cc9b38e75a3398aa9be8925 # Parent b7c4e6276bcf482621b28241a62678bfc195344b Proof Monad-law-2-2 diff -r b7c4e6276bcf -r c5cdbedc68ad agda/basic.agda --- a/agda/basic.agda Sat Oct 18 14:13:00 2014 +0900 +++ b/agda/basic.agda Sat Oct 18 14:15:13 2014 +0900 @@ -2,7 +2,7 @@ module basic where -id : {l : Level} {A : Set} -> A -> A +id : {l : Level} {A : Set l} -> A -> A id x = x _∙_ : {l ll lll : Level} {A : Set l} {B : Set ll} {C : Set lll} -> (B -> C) -> (A -> B) -> (A -> C) diff -r b7c4e6276bcf -r c5cdbedc68ad agda/similar.agda --- a/agda/similar.agda Sat Oct 18 14:13:00 2014 +0900 +++ b/agda/similar.agda Sat Oct 18 14:15:13 2014 +0900 @@ -49,10 +49,10 @@ similar lx x ly y ∎ +monad-law-2-2 : {l : Level} {A : Set l } -> (s : Similar A) -> (mu ∙ return) s ≡ id s +monad-law-2-2 (similar lx x ly y) = refl + {- -monad-law-2-2 : mu ∙ return ≡ id -monad-law-2-2 = {!!} - monad-law-3 : ∀{f} -> return ∙ f ≡ fmap f ∙ return monad-law-3 = {!!}