Mercurial > hg > Members > atton > delta_monad
changeset 61:18a0520445df
Add patterns generator
author | Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 24 Nov 2014 11:28:55 +0900 |
parents | 73bb981cb1c6 |
children | 0f308ddd6136 |
files | agda/patterns.rb |
diffstat | 1 files changed, 175 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/agda/patterns.rb Mon Nov 24 11:28:55 2014 +0900 @@ -0,0 +1,175 @@ +#!/usr/bin/env ruby + +require 'pry' + +# Agda {{{ + +Agda = %q( +open import list +open import basic + +open import Level +open import Relation.Binary.PropositionalEquality +open ≡-Reasoning + +module hoge where + + +data Delta {l : Level} (A : Set l) : (Set (suc l)) where + mono : A -> Delta A + delta : A -> Delta A -> Delta A + +deltaAppend : {l : Level} {A : Set l} -> Delta A -> Delta A -> Delta A +deltaAppend (mono x) d = delta x d +deltaAppend (delta x d) ds = delta x (deltaAppend d ds) + +headDelta : {l : Level} {A : Set l} -> Delta A -> Delta A +headDelta (mono x) = mono x +headDelta (delta x _) = mono x + +tailDelta : {l : Level} {A : Set l} -> Delta A -> Delta A +tailDelta (mono x) = mono x +tailDelta (delta _ d) = d + + +-- Functor +fmap : {l ll : Level} {A : Set l} {B : Set ll} -> (A -> B) -> (Delta A) -> (Delta B) +fmap f (mono x) = mono (f x) +fmap f (delta x d) = delta (f x) (fmap f d) + + + +-- Monad (Category) +eta : {l : Level} {A : Set l} -> A -> Delta A +eta x = mono x + +bind : {l ll : Level} {A : Set l} {B : Set ll} -> (Delta A) -> (A -> Delta B) -> Delta B +bind (mono x) f = f x +bind (delta x d) f = deltaAppend (headDelta (f x)) (bind d (tailDelta ∙ f)) + +-- can not apply id. because different Level +mu : {l : Level} {A : Set l} -> Delta (Delta A) -> Delta A +mu d = bind d id + + +returnS : {l : Level} {A : Set l} -> A -> Delta A +returnS x = mono x + +returnSS : {l : Level} {A : Set l} -> A -> A -> Delta A +returnSS x y = deltaAppend (returnS x) (returnS y) + + +-- Monad (Haskell) +return : {l : Level} {A : Set l} -> A -> Delta A +return = eta + +_>>=_ : {l ll : Level} {A : Set l} {B : Set ll} -> + (x : Delta A) -> (f : A -> (Delta B)) -> (Delta B) +(mono x) >>= f = f x +(delta x d) >>= f = deltaAppend (headDelta (f x)) (d >>= (tailDelta ∙ f)) + + + +-- proofs + + +-- Functor-laws + +-- Functor-law-1 : T(id) = id' +functor-law-1 : {l : Level} {A : Set l} -> (d : Delta A) -> (fmap id) d ≡ id d +functor-law-1 (mono x) = refl +functor-law-1 (delta x d) = cong (delta x) (functor-law-1 d) + +-- Functor-law-2 : T(f . g) = T(f) . T(g) +functor-law-2 : {l ll lll : Level} {A : Set l} {B : Set ll} {C : Set lll} -> + (f : B -> C) -> (g : A -> B) -> (d : Delta A) -> + (fmap (f ∙ g)) d ≡ ((fmap f) ∙ (fmap g)) d +functor-law-2 f g (mono x) = refl +functor-law-2 f g (delta x d) = cong (delta (f (g x))) (functor-law-2 f g d) + + + +-- Monad-laws (Category) +{- +monad-law-1-sub : {l : Level} {A : Set l} -> (x : Delta (Delta A)) (d : Delta (Delta (Delta A))) + -> deltaAppend (headDelta (bind x id)) (bind (fmap mu d) (tailDelta ∙ id)) ≡ bind (deltaAppend (headDelta x) (bind d (tailDelta ∙ id))) id +monad-law-1-sub (mono x) (mono (mono (mono x₁))) = refl +monad-law-1-sub (mono x) (mono (mono (delta x₁ d))) = refl +monad-law-1-sub (mono x) (mono (delta d d1)) = begin + deltaAppend (headDelta (bind (mono x) id)) (bind (fmap mu (mono (delta d d1))) (tailDelta ∙ id)) + ≡⟨ refl ⟩ + deltaAppend (headDelta (bind (mono x) id)) (bind ((mono (mu (delta d d1)))) (tailDelta ∙ id)) + ≡⟨ refl ⟩ + deltaAppend (headDelta (bind (mono x) id)) (bind (mono (bind (delta d d1) id)) (tailDelta ∙ id)) + ≡⟨ refl ⟩ + deltaAppend (headDelta (mu (mono x))) (((tailDelta ∙ id) (mu (delta d d1)))) + ≡⟨ refl ⟩ + deltaAppend (headDelta (mu (mono x))) (((tailDelta ∙ id) (bind (delta d d1) id))) + ≡⟨ {!!} ⟩ + deltaAppend (headDelta (mu (mono x))) (((tailDelta ∙ id) (bind (delta d d1) id))) +-- bind (delta (mu (mono x)) (mono (mu (delta d d1)))) id + ≡⟨ {!!} ⟩ + bind (deltaAppend (headDelta (mono x)) (bind (mono (delta d d1)) (tailDelta ∙ id))) id + ∎ +monad-law-1-sub (delta x x₁) (mono d) = {!!} +monad-law-1-sub x (delta d d1) = begin + deltaAppend (headDelta (bind x id)) (bind (fmap mu (delta d d1)) (tailDelta ∙ id)) + ≡⟨ {!!} ⟩ + bind (deltaAppend (headDelta x) (bind (delta d d1) (tailDelta ∙ id))) id + ∎ + +-} +-- monad-law-1 : join . fmap join = join . join +monad-law-1 : {l : Level} {A : Set l} -> (d : Delta (Delta (Delta A))) -> ((mu ∙ (fmap mu)) d) ≡ ((mu ∙ mu) d) +) + +# }}} + +Rules = { + 'T3' => ['(mono T2)', '(delta T2 T3)'], + 'T2' => ['(mono T1)', '(delta T1 T2)'], + 'T1' => ['(mono _)', '(delta _ T1)'] +} + +def generate_patterns source_patterns, operations + patterns = source_patterns.clone + operations.each do |op| + patterns = Rules[op].flat_map do |r| + patterns.flat_map{|p| p.gsub(op, r)} + end + end + patterns.uniq +end + +def pattern_formatter non_format_patterns + formatted_patterns = non_format_patterns.clone + + Rules.keys.each do |k| + formatted_patterns.map!{|p| p.gsub(k, '_')} + end + + formatted_patterns +end + +def generate_function function_name, patterns, body + patterns.map do |p| + "#{function_name} #{p} = #{body}" + end +end + +def generate_agda function_body + Agda + function_body.join("\n") +end + + + +patterns = ['(mono _)', '(delta T2 T3)'] +operations = ['T3'].cycle(3).to_a + ['T2'].cycle(6).to_a + ['T1'].cycle(12).to_a + + +patterns = generate_patterns(patterns, operations) + +puts patterns.size +function_body = generate_function('monad-law-1', pattern_formatter(patterns), 'refl') +agda = generate_agda(function_body) +File.open('hoge.agda', 'w').write(agda)